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A novel approach based on recursive symbolic computation is introduced for the
approximate analytic solution of the Burgers equation. Once obtained, appropriate
numerical values can be inserted into the symbolic solution to explore parametric
variations. The solution is valid for both inviscid and viscous cases, covering the
range of Reynolds number from 500 to infinity, whereas current direct numerical
simulation (DNS) methods are limited to Reynolds numbers no greater than 4000.
What further distinguishes the symbolic approach from numerical and traditional
analytic techniques is the ability to reveal and examine direct nonlinear interactions
between waves, including the interplay between inertia and viscosity. Thus, prelim-
inary efforts suggest that symbolic computation may be quite effective in unveiling
the “anatomy” of the myriad interactions that underlie turbulent behavior. However,
due to the tendency of nonlinear symbolic operations to produce combinatorial ex-
plosion, future efforts will require the development of improved filtering processes
to select and eliminate computations leading to negligible high order terms. Indeed,
the initial symbolic computations present the character of turbulence as a problem
in combinatorics. At present, results are limited in time evolution, but reveal the
beginnings of the well-known “saw tooth” waveform that occurs in the inviscid case
(i.e., Re=∞). Future efforts will explore more fully developed 1-D flows and in-
vestigate the potential to extend symbolic computations to 2-D and 3-D. Potential
applications include the development of improved subgrid scale (SGS) parameteri-
zations for large eddy simulation (LES) models, and studies that complement DNS
in exploring fundamental aspects of turbulent flow behavior.c© 2000 Academic Press
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1. INTRODUCTION

The Burgers equation, first presented by Bateman [2] and named after Burgers [5, 6],
has been explored throughout the years to test numerical algorithms and to explore 1-D
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turbulence, often referred to as “burgulence.” Indeed, fundamental knowledge about the
nature of certain turbulent processes (e.g., Burgers [5, 6], Lighthill [18], Blackstock [3]) has
been gleaned from the Burgers equation. Despite its fundamental nonlinearity, closed-form
analytical solutions have been obtained for the Burgers equation for a wide range of initial
and boundary conditions (e.g., Whitham [22], Hopf [17], Cole [9], Fletcher [13, 14]). These
analytical solutions serve as benchmarks for numerical solutions, but also provide insights
in their own right. Several current studies of turbulence in which the Burgers equation plays
a dominant role underscore its ongoing critical relevancy within the scientific community
(e.g., Gotoh and Kraichnan [15], Chen and Kraichnan [8], Eet al.[11], Gurbatovet al.[16],
Bouchaudet al. [4], Avellanedaet al. [1], and Chekhlov and Yakhot [7]).

The essence of turbulence is embodied in the quadratic, nonlinear convection terms of
the general, 3-D Navier–Stokes (N-S) equations. Turbulence is a fully three-dimensional
phenomenon, and, as such, can be understood completely only with a 3-D view. However,
the Burgers equation, although 1-D, possesses a fundamental quadratic nonlinearity and
is viewed as an appropriate starting “model” for studying turbulence. In fact Fletcher [13]
describes how the 1-D Burgers equation is suitable not only to explore and validate numerical
models but also serves as a reasonable means to study such physical processes as shock
waves, acoustic transmission, traffic flow, turbulent flow in a channel, compressible flow
turbulence, supersonic flow around airfoils, wave propagation in a thermo-elastic medium,
and the dynamics of bubbles in a liquid.

In this paper, a new approach developed by one of the authors (Derickson [10]) is pre-
sented in which symbolic computation is employed to obtain approximate analytical solu-
tions to the Burgers equations. Through a recursive process, symbolic representations of
momentum are obtained continuously in space at discrete increments in time. Once ob-
tained, appropriate numerical values can be inserted into the symbolic solution to explore
parametric variations. The solution is valid for both viscous and inviscid cases, covering
the range of Reynolds number from 500 to infinity. Unlike numerical approaches, high Re
flows present no difficulty to the symbolic method and, in fact, require less computational
effort than solutions at low Re. This is both ironic and fortuitous because high Re flows are
least understood and most in need of further study. Similarly, the symbolic method induces
no aliasing or false dispersion of waves, because the solution is analytic and continuous in
space. To the best of the authors’ knowledge, symbolic computation, although it has been
used widely in other areas (e.g., Scottet al. [21]), has never been undertaken in the study
of fluid turbulence.

A particular distinguishing feature of the symbolic approach is its ability to reveal the
direct nonlinear interactions between waves and the interplay between inertia and viscosity
at all spatial scales, including the small, dissipation scales. Such an approach finds relevancy
in the study of the basic fluid mechanics of turbulence and potentially could enhance the
use of direct numerical simulation (DNS) in exploring fundamental turbulent processes in
the inertial sub-range and dissipation scales. Large eddy simulation (LES) models, which
are becoming the “workhorse” in both research and practical studies of geophysical and
engineering flows, are in urgent need of better parameterizations of turbulence at sub-grid
scales (SGS) where inertia and dissipation interact. Symbolic computation of turbulence
may lead to the development of improved SGS representations.

The preliminary results presented in this paper demonstrate the potential insights gained
by the symbolic computation of the Burgers equation. However, due to the prodigious
number of terms generated by nonlinear interactions in the symbolic explorations, and
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limitations in computer power and memory, the initial effort was necessarily limited in
scope. With accrued experience in use of the symbolic approach, and access to greater
computing power, future efforts can greatly expand the preliminary results. What is now
viewed as classic work by Feigenbaum [12] in the study of chaos in one-dimension (1-D),
numerical computations revealed patterns and universal numbers that became the backbone
of chaos theory. Analogous insights, patterns, and universal relationships in fluid turbu-
lence potentially may be discovered by expanded use of symbolic computation. What is
particularly encouraging about advances in symbolic software programs and in computer
hardware since Feigenbaum’s studies of chaos in the early 1970s is the potential to explore
2-D and 3-D cases.

2. THE BURGERS EQUATION

2.1. The viscous Burgers equation.The viscous Burgers equation for velocityU =
U0+ u, whereU0 is a constant andν is viscosity, is

∂u

∂t
= −(U0+ u)

∂u

∂x
+ ν ∂

2u

∂x2
. (1)

The equation includes the local time derivative of momentum, the nonlinear convection term
(i.e., a quadratic nonlinearity), and the second order viscous diffusion term. The equation
does not contain a pressure derivative term, unlike the general Navier–Stokes equations.
Solutions to (1) experience a decay of momentum (hence, decay of kinetic energy) with
time due to the effects of viscosity.

Casting the equation in non-dimensional form yields

∂u′

∂t ′
= −(1+ u′)

∂u′

∂x′
+ Re−1∂

2u′

∂x′2
, (2)

where the various non-dimensional variables areu′ = u/U0, U ′0= 1, x′ = x/L0, t ′ = tU0/

L0, and Reynolds number, Re=U0L0/ν. L0 is a characteristic scale length, which corre-
sponds to a periodic spatial domain in the current study.

2.2. The inviscid Burgers equation.The inviscid Burgers equation, in non-dimensional
form, is simply

∂u′

∂t ′
= −(1+ u′)

∂u′

∂x′
, (3)

in which the second order viscous term in (2) has been excluded. This is equivalent to
Re=∞. The inviscid equation contains the essential quadratic nonlinearity, but no viscous
damping. Thus any solution to this equation must conserve momentum and kinetic energy
with evolution in time.

2.3. Analytic solutions of the Burgers equation.Several closed-form analytic solutions
have been found for the Burgers equation for a wide range of initial and boundary conditions
(Whitham [22], Hopf [17], Cole [9], Fletcher [13, 14]). Fletcher [14] provided the following
solution for the non-dimensional viscous Burgers equation,

u(x, t) =
∫ ∞
−∞

x − ξ
t

exp{−0.5 ReF} dξ
/∫ ∞

−∞
exp{−0.5 ReF} dξ, (4)
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FIG. 1. Schematic of exact analytic solution of viscous Burgers equation at non-dimensional timet = 0.92,
for Re= 10 and Re= 100. Discontinuous initial condition att = 0 indicated by bold dashed line.

where F(ξ ; x, t)= ∫ ξ0 u0(ξ
′) dξ ′ + 0.5(x − ξ)2/t . The initial conditions onu(x, t) are

given byu0(x)= u(x, 0)={1 if−1≤ x≤ 0; or 0 if 0< x≤ 1.}, and the boundary conditions
areu(−1, t)= 1 andu(1, t)= 0. The solution applies to−1≤ x≤ 1 for t ≥ 0. In (4),u(x, t)
represents a slightly different formulation compared to (2), in thatu(x, t) is the total veloc-
ity. Fletcher’s solution is based on a discontinuous initial condition, as displayed in Fig. 1,
but a multitude of other initial conditions are possible.

A sharp wave front is maintained over time for high values of Re, but is smoothed at
low Re. Such a front would also develop with a smooth initial condition such as a sinusoid
in a periodic domain (e.g., Derickson [10], Fletcher [14]): the higher Re, the steeper the
front. The front represents a balance between the creation of small waves through quadratic
nonlinear interactions and dissipation due to viscosity. In the limit of no viscosity (i.e.,
Re=∞), a sharp “saw tooth” wave forms in the periodic domain.

Analytic solutions such as the preceding serve to elucidate the effect of certain parametric
variations and have been used as benchmarks for numerical schemes. However, they do not
unveil the details of the nonlinear interactions underlying the solution.

3. SYMBOLIC COMPUTATION OF THE BURGERS EQUATION

3.1. Initializing and performing the symbolic computations.Both the viscous and in-
viscid versions of the non-dimensional Burgers equation, (2) and (3), are computed symbol-
ically on a periodic spatial domain with a non-dimensional length of unity (i.e., the original
dimensional domain length isL0.). A smooth sinusoidal function is specified as the initial
condition, or fundamental, for the momentum,

u′(x′, 0) = Asin(κ ′x′), (5)

which has a non-dimensional wavelength of unity, corresponding to the length of the periodic
spatial domain. Unlike the analytical solution presented in Subsection 2.3, which assumes
a discontinuous initial state, a smooth initial condition has been assumed here. The intent
is to observe the creation of higher order harmonics and not assume them at the start.

Prior to performing the computations, it is useful to eliminate the non-dimensional con-
stant velocity of unity in (2) and (3) to simplify computational results. Through a Galilean
transformation this is equivalent to following the steep wave front generated by the quadratic
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nonlinearity of the equation and eliminates a large number of terms that would result oth-
erwise from the symbolic operations. Thus, (2) and (3) are modified to

∂u′

∂t ′
= −u′

∂u′

∂x′
+ Re−1∂

2u′

∂x′2
, (2a)

and

∂u′

∂t ′
= −u′

∂u′

∂x′
. (3a)

Integration of (2a) over a discrete time increment leads to the following exact, recursive
expression, where the primes denoting non-dimensional variables have been dropped for
convenience,

uτ+1 = uτ +1t
[
−u

∂u

∂x
+ Re−1∂

2u

∂x2

]1t

. (6)

The integration of (3a) differs only in the omission of the viscous term. In (6),1t is the time
increment, the superscript and overbar of the bracketed terms represent the time average
over the time increment, andτ corresponds to the time step, in whichτ = 0 initially. Thus,
recursive application of (6) represents an exact analytic solution at discrete time steps,m1t ,
wherem is a positive integer.

An iterative technique was developed to approximate (6), using a trapezoidal time averag-
ing operator, in which equal weighting is given to the new and old time steps (i.e., effectively
a Crank–Nicolson implicit approach applied to the symbolic integration). Symbolic com-
putation of the spatial terms proceeds in a straightforward manner for each iteration in
a given time step. To begin each time step in the recursion, the first iteration utilizes a
forward-in-time operator as

uτ+1
∗ = uτ +1t

[
−u

∂u

∂x
+ Re−1∂

2u

∂x2

]τ
. (7a)

That is, the time average of the bracketed derivative terms in (6) is initially approximated
by the symbolic representation at time levelτ . Thenuτ+1

∗ , the first iterative value ofuτ+1,
is obtained from (7a), and spatial derivatives are computed for time levelτ + 1, based on
uτ+1
∗ . In the second iteration, the time average of the derivative terms is approximated by

the arithmetic average of their symbolic representations atτ andτ + 1 to obtain an updated
symbolic version ofuτ+1, as

uτ+1 = uτ + 1t

2

{[
−u

∂u

∂x
+ Re−1∂

2u

∂x2

]τ
+
[
−u∗

∂u∗
∂x
+ Re−1∂

2u∗
∂x2

]τ+1
}
. (7b)

Spatial derivatives at theτ + 1 time level then can be updated, with values at theτ level
being held constant, and the iterative process can be repeated with (7b). However, sensitiv-
ity tests with multiple iterations suggest that a single trapezoidal averaging application is
sufficient. That is, only one forward-in-time and one trapezoidal computation are necessary
at each time step. Additional iterations primarily produce higher order harmonics of neg-
ligible magnitude rather than improve solution accuracy. The overall procedure is applied
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recursively to obtain symbolic representations for each succeeding time level, i.e.,uτ+2,
uτ+3, etc. The use of the iterative procedure yields a highly accurate, approximate analytic
solution to the Burgers equation at the discrete time levels. Arbitrary accuracy is achieved
by truncating only negligible high order terms during each time step.

As will be discussed in greater detail in Subsection 3.3, the symbolic computations
produce an increasing number of terms with each successive time step. After a few time
steps the number of terms becomes massive (i.e., combinatorial explosion) and it is therefore
routinely necessary to select and eliminate (i.e., filter) negligible terms of higher order
during symbolic operations within each time step. To ensure that eliminated terms are
indeed negligible, it is necessary to establish upper numerical limits onA and1t , and a
lower limit on Re, points that will be addressed in Subsection 3.5.

3.2. Overview of computational results.The symbolic solution of the Burgers equation
was computed for seven discrete, non-dimensional time steps, which was sufficient to
simulate the beginnings of the classic “sawtooth” waveform. It is important to emphasize
that the seven non-dimensional time steps with the symbolic computations are equivalent to
approximately 90 such time steps in a comparable numerical solution. This estimate is based
on comparisons to numerical simulations of the Burgers equation performed by Derickson
[10]. Whereas the magnitude of the time step,1t , in numerical schemes is limited by severe
restrictions on the upper bounds of the Fourier and Courant numbers, the symbolic solution,
which is continuous in space, has no equivalent limitation. However, the ability to maintain
solution accuracy while excluding negligible high order terms does restrict the numerical
magnitude of1t that can be applied to the symbolic solution.

A very significant advantage of the symbolic approach over comparable numerical meth-
ods is that a numerical solution represents only a single parameter value (e.g., one value
of Re), whereas the symbolic solution, being analytic, represents an infinite number of
parametric variations. Also, the lack of restriction on an upper limit of Re in the symbolic
method adds a crucial advantage over numerical counterparts, such as DNS which is limited
to Re≤ 4000.

All symbolic computations were performed with the MAPLE symbolic engine (Redfern
[20]). Computations were done in a manual, interactive mode on a 90-MHZ PC, which
possessed 32 megabits of RAM. To compute seven time steps took approximately 10 min-
utes, most of which were consumed by manual operations, computer I/O operations, and
visual assessment of results at each intermediate symbolic operation. Actual computation
time is estimated to be about 2 to 4 minutes. Future efforts with more computational power
and memory, and with a fully automated computational process, will greatly extend the
preliminary results reported in this paper.

Table I presents the symbolic results for the 1st and 3rd time steps, showing the birth and
growth of harmonics and the decay of the fundamental with time. The table also reveals the
general form of the solution for each discrete time level,m1t (m= 1, 2, 3, . . . ,M),

u(x,m1t) =
N∑

n=1

Fn sin(nκx), (8)

where

Fn =
{

J∑
j=1

Cnj An+2 j−2κn+2 j−31tn+2 j−3+
J∑

j=1

Dnj An+2 j−2κn+2 j−11tn+2 j−2 1

Re

}
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TABLE I

Results of Symbolic Computation of the Burgers Equation for 1st and 3rd Time Steps

[A] 1st Time Step

Forward-in-time iteration

u(x,1t) =
{

A− Aκ21t
1

Re

}
sin(κx)− 1

2
A2κ1t sin(2κx)

Trapezoidal iteration

u(x,1t) =
{

A− 1

8
A3κ21t2 +

(
−Aκ21t + 1

8
A3κ41t3

)
1

Re

}
sin(κx)+

{
−1

2
A2κ1t + 3

2
A2κ31t2 1

Re

}
× sin(2κx)+

{
3

8
A3κ21t2 − 3

8
A3κ41t3 1

Re

}
sin(3κx)− 1

8
A4κ31t3 sin(4κx)

[B] 3rd Time Step

Trapezoidal iteration

u(x, 31t) =
{

A− 9

8
A3κ21t2 − 3

32
A5κ41t4 +

(
−3Aκ21t + 75

8
A3κ41t3 + 383

32
A5κ61t5

)
1

Re

}
sin(κx)

+
{
−3

2
A2κ1t + 4A4κ31t3− 67

128
A6κ51t5+

(
27

2
A2κ31t2−54A4κ51t4− 5175

128
A6κ71t6

)
1

Re

}
× sin(2κx)+

{
27

8
A3κ21t2− 801

64
A5κ41t4+ 261

64
A7κ61t6+

(
−417

8
A3κ41t3+ 14349

64
A5κ61t5

+ 11145

128
A7κ81t7

)
1

Re

}
sin(3κx)+

{
−67

8
A4κ31t3 + 1151

32
A6κ51t5 − 553

32
A8κ71t7

+
(

363

2
A4κ51t4 − 24567

32
A6κ71t6 − 3747

64
A8κ91t8

)
1

Re

}
sin(4κx)

+


1365

64
A5κ41t4 − 6175

64
A7κ61t6 + 513265

4096
A9κ81t8

+
(
−36545

64
A5κ61t5 + 292585

128
A7κ81t7 − 11108435

4096
A9κ101t9

)
1

Re

 sin(5κx)

+
{
−6855

128
A6κ51t5+ 22233

128
A8κ71t7+

(
209829

128
A6κ71t6− 2263035

512
A8κ91t8

)
1

Re

}
sin(6κx)

is the amplitude of each harmonic at the discrete time levelm1t ; n= 1, 2, 3, . . . , N corre-
sponds to the fundamental and each harmonic up to the(N − 1)st harmonic; and the index
j = 1, 2, 3, . . . , J corresponds to the respective terms associated with the fundamental and
each harmonic. The fundamental is denoted by sin(κx) and the odd and even harmonics
are denoted by sin{(2n)κx} and sin{(2n+ 1)κx} , respectively. Thus, sin(2κx) corresponds
to the 1st harmonic and sin(3κx) corresponds to the 2nd harmonic, etc.Cnj and Dnj , all
of which are rational numbers, are the respective leading coefficients for each inviscid and
viscous term. For convenience of analysis, the terms are viewed as inviscid-viscous pairs,
(Cnj , Dnj ), in which each pair of terms is denoted by its leading coefficients for expediency.

Table I shows that at each time step the leading coefficients,Cnj andDnj , of all existing
terms change, and new terms are added to the fundamental and each harmonic through
the symbolic computations. The table represents a filtered solution in which negligible
higher order terms were excluded during computations. As can be observed in the table,
leading coefficients can become quite large, complicating the issue of discerning negligible
terms. The coefficients are rational numbers, which preserve solution accuracy. MAPLE
can handle extremely large integers (500,000 digits), so large leading coefficients are not a
computational problem.
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The symbolic solution represents an approximate, spatially continuous analytical solution
of high order accuracy at discrete time levels. The forward-in-time iteration (FI) is included
for the 1st time step in Table I to elucidate the process of solution improvement. Only
the final, or trapezoidal, time iteration (TI) is shown for the 3rd time step. In general,
higher order terms are affected most by the second iteration in the symbolic computations,
a characteristic common to numerical iterations. Results for the inviscid Burgers equation
differ from the tabulated viscous solution only in the exclusion of all terms containing Re.
Symbolic computations are quicker and easier to perform for the inviscid case due to the
absence of the viscous terms, which cause considerably greater combinatorial interactions.
However, the inviscid case, which corresponds to infinite Re, does not induce the instabilities
inherent to numerical solutions at high Re.

The symbolic solution does not produce false dispersion of waves or aliasing, nor require
an upper bound on Re. These are significant issues in numerical methods. The analytic na-
ture of the symbolic solution, which is continuous in space and discrete in time, precludes
false dispersion and aliasing and any restriction on maximum allowable Re. These phe-
nomena are known to be associated with spatial discretization in finite difference methods
(e.g., Derickson [10]). Spectral methods, while producing minimal false dispersion, require
dealiasing at each computational time step (e.g., Fletcher [14]). Spectral DHS methods also
are restricted to Re values of no greater than 4000.

As will be elaborated in Subsection 3.5, the viscous solution is valid only for Re above a
lower limit of 500. For the solution to remain valid below this lower threshold, a large number
of symbolic terms containing higher order powers of Re−1 must be retained in the symbolic
computations, resulting in much greater computational expenditure. This happenstance is
ironic in contrast to the difficulty numerical solutions face as Re increases from small to
large magnitudes, the latter of which represent the more interesting regimes of turbulent
flow, in general.

Figures 2 and 3 show the evolution of the symbolic solution for Re= 500 and Re=∞
(i.e., the inviscid case), respectively. The initial condition and the 3rd and 7th time steps
are shown. Values ofA= 0.3 and1t = 0.055, which were determined to be appropriate
upper numerical limits on the amplitude factor and non-dimensional time step to maintain
solution validity, are reflected in the figures. The figures reveal the decay of the funda-
mental and the growth of harmonics, yielding a net waveform that is tending toward the
well known “sawtooth” shape produced in solutions to the Burgers equation at high Re.
Figure 2, corresponding to Re= 500, shows greater damping of the fundamental and slower
growth of the harmonics with time. However, the differences between the two cases become
visibly discernible in Figs. 2 and 3 only at the 7th time step. As revealed in Table I and
Figs. 2 and 3, the fundamental and the even harmonics have positive amplitudes and the
odd harmonics have negative amplitudes. This alternation of sign is more clearly shown in
Fig. 4, which displays the growth of the harmonics with each successive time step. Fig-
ure 4 also more clearly shows the greater harmonic magnitudes for Re=∞ compared to
Re= 500.

3.3. Combinatorics of nonlinear interactions.In the symbolic solution, the quadratic
nonlinear interactions at each time step correspond to symbolic multiplication between
momentum, represented by (8), and its derivative, i.e.,u ∂u

∂x , in which multiplications between
all possible combinations of existing harmonic pairs are performed pair by pair. Referring
to Appendix A and (8) for elucidation, a single nonlinear multiplication between any two
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FIG. 2. Time evolution of fundamental and 1st through 5th harmonics in symbolic computation of the Burgers
equation for Re= 500. Non-dimensional amplitude factor and time step areA= 0.3 and1t = 0.055, respectively.

harmonics can be represented by the general form

Lc An1+2 j1−2An2+2 j2−2 sin(n1κ) cos(n2κ)

= 1

2
Lc An1+n2+2( j1+ j2−2)[sin(n1+ n2)κ + sin(n1− n2)κ], (9)

where Lc is the leading coefficient, the ordered pair(n1, n2) denotes the respective
wavenumbers of the two interacting harmonics, andj1 and j2 represent the particular
term associated with each harmonic, that is, its leading term, or its 2nd or 3rd term, etc.
(refer to Table I and (8) for clarity). As explained in Appendix A, the term sin(n1+ n2)κ
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FIG. 3. Time evolution of fundamental and 1st through 5th harmonics in symbolic computation of the Burgers
equation for infinite Re. Non-dimensional amplitude factor and time step areA= 0.3 and1t = 0.055, respectively.

in (9) represents outscatter, or “production” of a higher order harmonic, and sin(n1− n2)κ

represents backscatter to a lower order harmonic.
In general,j1 6= j2 more frequently thanj1= j2. If a multiplication involves the leading

term for each harmonic in the pair, thenj1= j2= 1. The multiplication represented by (9)
may involve two inviscid terms, two viscous terms, or one inviscid and one viscous term,
such that any one of the following four combinations is possible for the resulting leading
coefficient,Lc: Lc=Cn1 j1

Cn2 j2
, Lc= Dn1 j1

Dn2 j2
, Lc=Cn1 j1

Dn2 j2
, or Lc= Dn1 j1

Cn2 j2
. The

wavenumber,κ, and the time increment,1t , have been omitted as factors in (9) because,
referring to (8), their respective powers depend on whether inviscid or viscous terms, or a
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FIG. 4. Amplitudes of 1st through 10th harmonics at each of seven discrete time steps in symbolic computation
of the Burgers equation for (a) Re= 500 and (b) infinite Re. The artifice of continuous curve fitting between discrete
harmonics helps to clarify harmonic growth in time.

mix, are involved in the multiplication. Their inclusion is not essential for the discussion
at hand. Three possibilities exist for a nonlinear interaction between two harmonics repre-
sented by the ordered pair,(n1, n2): (i) n1> n2, in which case the outcome of backscatter
has a positive sign, (ii)n1< n2, backscatter is negative in sign, and (iii)n1= n2, which rep-
resents a self- interaction of a harmonic (or the fundamental), producing outscatter but no
backscatter. Outscatter is identical for cases (i) and (ii). Each nonlinear interaction between
a given pair(n1, n2) produces both outscatter and backscatter, with the exception of case
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TABLE II

Example of Terms Produced by Nonlinear Interaction and Their

Simplification (11 Terms Produced in 2nd Iteration of 1st Time Step

in Symbolic Computation)

(1) A2k sin(kx) cos(kx) = 1

2
A2k sin(2kx)

{A}
(2) −2A2k3t Rsin(kx) cos(kx) = −A2k3t Rsin(2kx)

{B} {C}∗
(3) −A3k2t sin(kx) cos(2kx) = −1

2
A3k2t sin(3kx)+ 1

2
A3k2t sin(kx)

{B} {C}∗
(4) −1

2
A3k2t sin(2kx) cos(kx) = −1

4
A3k2t sin(3kx)− 1

4
A3k2t sin(kx)

{D} {E}∗
(5)

1

2
A3k4t2Rsin(2kx) cos(kx) = 1

4
A3k4t2Rsin(3kx)+ 1

4
A3k4t2Rsin(kx)

(6)
1

2
A4k3t2Rsin(2kx) cos(2kx) = 1

4
A4k3t2Rsin(4kx)

(7) A2k5t2R2 sin(kx) cos(kx) = 1

2
A2k5t2R2 sin(2kx)

{D} {E}∗
(8) A3k4t2Rsin(kx) cos(2kx) = 1

2
A3k4t2Rsin(3kx)− 1

2
A3k4t2Rsin(kx)

(9) Ak2Rsin(kx) = same

(10) −Ak4t R2 sin(kx) = same

(11) −2A2k3t Rsin(2kx) = same{A}

∗ Denotes backscatter.
Note.A, B, C, D, and E denote terms with common factors.

(iii), and the resulting amplitudes are identical for outscatter and backscatter, as reflected
in the amplitude factor on the RHS of (9),

amplitude factor= An1+n2+2( j1+ j2−2). (10)

A simple example elucidates the great number of multiplicative combinations that arise
in the symbolic computations. If at the beginning of a given time step there are 6 har-
monics, plus the fundamental, and each has 4 terms, then there are a total of 4(6+ 1)= 28
terms representing momentum. Therefore, the momentum multiplied by its derivative yields
282= 784 quadratic terms at the new time step. Additionally, 28 linear terms are generated
from the second order term in the Burgers equation, for a total of 812 terms. Table II displays
the 11 resulting terms produced by symbolic computation of the Burgers equation at the
second (i.e., final) iteration of the 1st time step. At this point, the total number of terms is
quite small compared to subsequent time steps when combinatorial explosion occurs. Also
shown in the table are the conversion of quadratic terms through use of a trigonometric
identity, as described in Appendix A, and the combination of like terms. Outscatter and
backscatter are denoted in the table. The first eight terms shown in the table result from
nonlinear interactions and the last three terms stem solely from the linear viscous term of the
Burgers equation. An important aspect identified in the table is that the second term, which
is a nonlinear inertial term, combines with the last term, a strictly linear term stemming
from viscous damping. Thus, the interplay between inertial and viscous terms is revealed.
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The integer exponent of the amplitude factor, (10), embodies complex combinations of
harmonic interactions. Signifying the exponent asE= n1+ n2+ 2( j1+ j2− 2) , several
scenarios can be explored. If only the leading terms of an interacting harmonic pair are
considered, thenj1= j2= 1, and the exponent reduces toE= n1+ n2. Various wavenumber
pairs,(n1, n2), potentially compriseE. Obviously, the higher the value ofE is, the greater
the complexity. Except whenn1= n2, each ordered pair,(n1, n2), has a counterpart pair,
(n2, n1), with the two elements in reversed order. This is evident in Table II, which shows
that the companion pairs exist in separate terms that may or may not have common signs
or multipliers. One pair of the set potentially yields an opposite sign in backscatter, which
does not in general lead to canceling effects, as seen in the table. Ifn1= n2, no backscatter
is produced, as previously explained.

If other than leading terms are considered in the preceding analysis (i.e.,j1 6= 1 andj2 6= 1),
then the scenarios involving the exponent of the amplitude factor become more complex,
but follow a similar line of reasoning. For example, assumej1 6= 1 and j2 6= 1 in (10).
Sincen1+ n2 = E − 2( j1+ j2− 2), settingE= 14 and j1+ j2= 5 yieldsn1+ n2= 8.
The companion harmonic pairs (i) (2, 6) and (6, 2), (ii) (3, 5) and (5, 3), and (iii) (4, 4)
satisfy the criterionn1+ n2= 8. But for each of these, the following combinations of term
pairs, [j1, j2], satisfy j1+ j2= 5: [1, 4], [4, 1], [2, 3], and [3, 2] in which element order in
each pair is important. Because there are a total of 5 harmonic pairs, and 4 term pairs for each
harmonic pair, a total of 20 interactions satisfy the criterionE= 14. All of the harmonic
pairs produce outscatter to the 7th harmonic, becausen1+ n2= 8, but the harmonic pairs
(2, 6) and (6, 2) produce backscatter to the 3rd harmonic. The pairs (3, 5) and (5, 3) produce
backscatter to the 1st harmonic, and (4, 4) produces no backscatter. It is evident there is
a large and complex combination of harmonic interactions at play in the solution to the
Burgers equation.

Table III displays combinations of nonlinear harmonic interactions,(n1, n2), that poten-
tially produce outscatter and backscatter in the fundamental and the 10 harmonics produced
in the symbolic solution. However, the companion harmonic pairs denoted by(n2, n1) are
omitted for presentational convenience, but self-interactions denoted byn1= n2 are in-
cluded. Note that outscatter combinations are fewer in number compared to backscatter
combinations, and that the fundamental only experiences backscatter. However, solution

TABLE III

Combinations of Harmonic Pairs Producing Outscatter and Backscatter for Fundamental

and Various Harmonics

Affected Outscatter Backscatter
harmonic combinations combinations

Fundamental None (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10)...

1st harmonic (1,1) (1,3) (2,4) (3,5) (4,6) (5,7) (6,8) (7,9) (8,10) (9,11)...

2nd harmonic (1,2) (1,4) (2,5) (3,6) (4,7) (5,8) (6,9) (7,10) (8,11) (9,12)...

3rd harmonic (1,3) (2,2) (1,5) (2,6) (3,7) (4,8) (5,9) (6,10) (7,11) (8,12)...

4th harmonic (1,4) (2,3) (1,6) (2,7) (3,8) (4,9) (5,10) (6,11) (7,12) (8,13)...

5th harmonic (1,5) (2,4) (3,3) (1,7) (2,8) (3,9) (4,10) (5,11) (6,12) (7,13)...

6th harmonic (1,6) (2,5) (3,4) (1,8) (2,9) (3,10) (4,11) (5,12) (6,13) (7,14)...

7th harmonic (1,7) (2,6) (3,5) (4,4) (1,9) (2,10) (3,11) (4,12) (5,13) (6,14)...

8th harmonic (1,8) (2,7) (3,6) (4,5) (1,10) (2,11) (3,12) (4,13) (5,14) (6,15)...

9th harmonic (1,9) (2,8) (3,7) (4,6) (5,5) (1,11) (2,12) (3,13) (4,14) (5,15)...

10th harmonic (1,10) (2,9) (3,8) (4,7) (5,6) (1,12) (2,13) (3,14) (4,15) (5,16)...
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results presented in Subsection 3.4 show that most backscatter combinations are of negli-
gible consequence. In contrast, all outscatter combinations are found to be significant, but
the strongest effect always involves the fundamental.

The preceding analysis provides a framework to analyze and interpret the results pro-
duced by the symbolic computation of the Burgers equation. Referring to (8), each of the
J inviscid andJ viscous terms comprising the amplitude,Fn, of each harmonic in the
symbolic solution is itself a composite which embodies outscatter, backscatter, and vis-
cous damping that result from potentially large numbers of interacting harmonic pairs. It
is instructive to examine individual effects that lead to each composite term inFn by in-
vestigating intermediate symbolic operations during each time step, similarly to what was
described for Table II. Such a task is useful, in general, for identifying and studying vari-
ous nonlinear inertial interactions, linear damping mechanisms, and the interplay between
inertia and viscous damping. However, experience indicates that it would be inefficient,
if not intractable, to use the intermediate symbolic operations if the goal is to isolate and
assess the integrated individual effects of outscatter, backscatter, and viscous damping on
each individual harmonic. Therefore, an efficient, supplemental method is developed in
Appendix B to achieve the desired result of isolating and separately evaluating the effects
of these three key mechanisms.

3.4. Detailed symbolic results: Analysis of outscatter, backscatter, and viscous damping.
In viewing the symbolic results embodied in Tables I and II, it is useful to explore the funda-
mental and various harmonics separately. At each time step, the symbolic solution, which is
in the form expressed by (8), is post-processed using the method presented in Appendix B
in which the following numerical upper limits are applied:A= 0.3, and1t = 0.55. The
process of determining appropriate numerical values is described in Subsection 3.5.

Figures 5–8 show the evolution of the fundamental and the 1st, 3rd, and 10th harmonics
over the seven computed time steps. The fundamental and specific harmonics were chosen
to enable a broad analysis and interpretation of the fundamental results of the symbolic
solution. The symbolsOni−nj and Bni−nj are employed in the figures to represent the
outscatter (i.e., production) and backscatter, and the specific harmonic pairs leading to
each effect.Onet andBnet denote the net effects of outscatter and backscatter. The viscous
damping of the fundamental and three harmonics is shown separately on the figures and
labeled explicitly. Each figure shows results for (a) Re= 500 and (b) Re=∞. Care must be
exercised in comparing Figs. 5–8, because the vertical scales differ between each figure to
accommodate the range of magnitudes of the outscatter, backscatter, and damping for each
respective harmonic being displayed. For direct comparison between harmonics, the reader
is referred to Figs. 4 and 9 in which all harmonics are displayed on the same vertical scale.

Figure 5 displays solution results for the fundamental. The greatest backscatter, denoted
by B1−2, stems from the nonlinear interaction between the 1st harmonic and the funda-
mental itself. Secondary backscatter occurs through interactions between the 1st and 2nd
harmonics,B2−3, and between the 2nd and 3rd harmonics,B3−4. Backscatter also results
from interactions between the 3rd and 4th harmonics and other higher order pairs differing
byκ in wavenumber, but those interactions are negligible and not shown on the figure. When
Re= 500, viscous damping exceeds the primary backscatter in magnitude up until the 2nd
time step, beyond which the backscatter increases significantly in magnitude due to the rapid
growth of the 1st harmonic. The effect of damping slowly decreases with each time step as
the amplitude of the fundamental decreases, but always exceeds the secondary backscatter.
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FIG. 5. The time evolution of the fundamental at each of seven discrete time steps in symbolic computation of
the Burgers equation for (a) Re= 500 and (b) infinite Re. Displays backscatter, Bn1-n2, resulting from interactions
between specific harmonic pairs, (n1, n2), and damping due to viscosity. Example B2-3 represents backscatter due
to interaction between 1st and 2nd harmonics.

In all cases, both damping and backscatter diminish the magnitude of the fundamental.
There is no outscatter to the fundamental due to the absence of lower order harmonics.

When Re=∞, there is no damping, but by comparing parts (a) and (b) of Fig. 5, it is
apparent that the effects of backscatter increase by only a small amount. Thus, viscosity
does not have a large influence on the fundamental over the seven time steps computed.

The 1st harmonic reveals more intricate behavior. Time histories of the production (i.e.,
outscatter), backscatter, and viscous damping are displayed in Fig. 6. The 1st harmonic is
created at the 1st time step by self-interaction of the fundamental, as denoted byO1−1 in
the figure, and continues to grow with time, but at a decreasing rate as the fundamental
diminishes. Being an odd harmonic, its amplitude is negative. Its only mode of production
is through the fundamental, but it experiences backscatter due to interaction between the
fundamental and 2nd harmonic, noted byB1−3 in the figure, and between the 1st and
3rd harmonics, shown asB2−4. Other modes of backscatter are negligible and not shown.
Production swamps backscatter and damping over all seven time steps. Backscatter and
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FIG. 6. The time evolution of the 1st harmonic. Displays backscatter, Bn1-n2, and outscatter, Om1-m2, resulting
from interactions between specific harmonic pairs, (n1, n2) and (m1, m2), and damping due to viscosity. Example
B1-3 represents backscatter due to interaction between fundamental and 2nd harmonic.

damping serve to diminish the amplitude of the 1st harmonic, and damping increases with
time because the harmonic is growing.

When Re=∞, there is no damping, but production and backscatter increase by only a
small amount, as shown in Fig. 8. Like the fundamental, the 1st harmonic is affected more
by inviscid mechanisms than by viscosity throughout the time evolution of the symbolic
computation.

Bypassing the 2nd harmonic, an analysis is made of the 3rd harmonic due to its greater
complexity. While the 2nd harmonic is created solely by interactions between the funda-
mental and the 1st harmonic, the 3rd harmonic is created from outscatter produced by two
distinct pairs of interactions: (a) the fundamental and the 2nd harmonic, and (b) the self-
interactions of the 1st harmonic. The two production mechanisms are represented byO1−3

andO2−2 in Fig. 7, in whichO1−3 is nearly three times as large asO2−2 for all seven time
steps. It may seem counterintuitive thatO1−3 should be that much greater thanO2−2, given
that the 1st harmonic is straddled by an interaction that produces a greater effect than its
own self-interaction. The explanation lies in the large amplitude,F1, of the fundamental,
such that|F1F3|> 1

2 F2
2 , (see discussion in Appendix B).



SYMBOLIC COMPUTATION OF THE BURGERS EQUATION 235

FIG. 7. The time evolution of the 3rd harmonic. Displays outscatter, backscatter, and viscous damping.

Backscatter to the 3rd harmonic occurs due to interaction between the fundamental and
4th harmonic and between the 1st and 5th harmonics, as shown in Fig. 7 byB1−5 andB2−6, in
which B1−5À B2−6. All higher order backscatter is negligible and therefore excluded. The
net effect of backscatter is about one-fourth that of production, but damping is comparable
in magnitude to primary backscatter, so the net effect of backscatter and damping is quite
significant on the 3rd harmonic.

Lack of damping at Re=∞ has a more significant effect on the 3rd harmonic than for
the lower order harmonics and the fundamental, as shown in Fig. 7. Beginning with the
3rd harmonic, the solution revealed that the lack of viscosity has an increasingly profound
effect on both production and backscatter with increasing harmonic order, with the strongest
impact being on backscatter. Results for higher order harmonics are not displayed.

Analysis also reveals that for each successively higher order harmonic, the role of damping
increases to the point of exceeding the effect of backscatter, and the combination of damping
and backscatter becomes increasingly significant relative to the net effect of production.
This is certainly an intuitive result. The ratio of the magnitude of production to the combined
magnitude of damping and backscatter, however, is about three for the 8th harmonic. Thus,
production, or outscatter, continues to play the dominant role.
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FIG. 8. The time evolution of the 10th harmonic. Displays outscatter and viscous damping. Being the highest
order harmonic in the symbolic solution, no backscatter is present.

More modes of production are present with increasing harmonic order, as evident in the
figures and in Table III, due to the greater number of associated lower order harmonics.
Thus, while the 5th harmonic has three production modes, the 7th harmonic has four. By the
9th and 10th harmonics there are five modes of production, as shown in Fig. 8 for the 10th
harmonic. The strongest, or primary, mode of production was found to always involve the
fundamental. Each individual secondary mode of production is smaller in magnitude than the
primary mode. With increasing harmonic order, however, there are more secondary modes
and collectively they can produce a greater effect than the primary mode of production.
It is therefore apparent that as time evolves and additional higher order harmonics are
produced, the mechanisms of outscatter become increasingly numerous and complex. On
the other hand, there are at most only two significant backscatter combinations for all the
harmonics produced in the symbolic solution, and only one of those has a primary effect.
The 9th harmonic has only one backscatter mode and the 10th harmonic has none, as will
be discussed subsequently.

Three key facts emerge regarding the mechanisms and behavior of backscatter in the
symbolic solution of the Burgers equation. First of all, significant backscatter to each har-
monic except the 1st results solely from interactions between a harmonic pair containing a
lower order harmonic and a higher order harmonic relative to the harmonic being influenced.



SYMBOLIC COMPUTATION OF THE BURGERS EQUATION 237

FIG. 9. The comparative amplitudes of the fundamental and 1st through 10th harmonics at each of seven
discrete time steps in symbolic computation of the Burgers equation for (a) Re= 500 and (b) infinite Re. The slope
of each curve reveals the time rate of change of each harmonic.

In all cases observed, the fundamental interacting with the adjacent higher order harmonic
creates the dominant backscatter effect. Thus backscatter cannot be characterized as a “lo-
calized” nonlinear effect. Backscatter due to interactions in which both harmonics in the
pair are of higher order than the affected harmonic was found to be negligible in the prelim-
inary computations. This certainly may not be the case for solutions with initial conditions
that contain high order harmonics of large amplitude. There may be other cases where the
cumulative backscatter created by a myriad of high order pairs could be significant. Second,
the effect of backscatter is to deplete momentum in all cases, regardless of the value of Re.
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Thus, viscous damping and backscatter work in concert to decrease the momentum. For
time evolution beyond the current preliminary results, there may be cases where the effect
of backscatter is to supply momentum to lower order harmonics and the fundamental. Third,
as the symbolic solution evolves, the highest order harmonic included at any given time step
experiences production but no backscatter because of the absence of the next higher order
harmonic. This is illustrated in Fig. 8 for the 10th harmonic, the highest order considered
in the solution.

It is argued that the unavoidable exclusion of backscatter for the highest order harmonic
is of negligible consequence to the symbolic solution. First of all, by virtue of the filtering
process described in Subsection 3.5, the amplitude of the highest order harmonic included in
the solution at each time step is inherently small. Each successive higher order harmonic is
allowed into the solution only when production (i.e., outscatter) causes the current highest
order harmonic to exceed a certain magnitude relative to its lower order neighbor. The
two primary ways the highest order harmonic affects the solution is through backscatter
to its lower order neighbor and production to the next higher order harmonic. As was
described in the preceding discussion, backscatter depletes momentum, at least for the
preliminary computations undertaken in this study. Thus, the lack of backscatter to the
highest order harmonic serves to make its amplitude somewhat larger than it otherwise
would be. Through backscatter, it therefore causes its lower order neighbor to be somewhat
smaller than otherwise. Then, because production of the highest order harmonic is directly
related to the magnitude of its lower order neighbor, it in turn receives less production and
grows less in amplitude. So the tendency of the highest order harmonic to become too large
due to its not receiving backscatter is counteracted by a self-adjusting process. A more
rigorous validation of solution accuracy, with truncation of higher order harmonics, is that
the kinetic energy of the symbolic solution of the inviscid Burgers equation (i.e., Re=∞)
was found to remain constant to within 0.14% as the solution progressed in time. Thus
energy is conserved to a high order of accuracy.

Figure 9 displays the “birth” and growth of the 10 harmonics produced by the solution.
The fundamental is excluded from the figure. The 4th harmonic is “born” at the 3rd time
step and its growth accelerates in time. The 7th harmonic is born at the 4th time step when
Re=∞, and at the 5th time step when Re= 500. The figure clearly reveals the enhanced
effect of viscous damping with increasing harmonic order.

3.5. Filtering negligible symbolic terms.As previously discussed, the symbolic results
displayed in Tables I and II represent a filtered set of computations. Sensitivity tests were
done in an attempt to develop an effective process to identify and eliminate negligible terms
prior to symbolic multiplication in order to prevent or minimize unproductive combinatorial
explosion and maintain solution accuracy. However, a significant portion of the filtering
process can only be performed after symbolic operations have produced a myriad of both
critical and superfluous terms. Filtering is based primarily on evaluating the symbolic terms
comprising the amplitudes of the fundamental and each harmonic. The separate issue of the
addition, or “birth,” of higher order harmonics into the symbolic solution was described in
Subsection 3.4.

In (8) it is apparent that the leading inviscid and viscous terms for each harmonic are
Cn1 Anκn−11tn−1 andDn1 Anκn+11tn 1

Re, in whichCn1andDn1 are their leading coefficients.
The second inviscid and viscous terms areCn2 An+2κn+11tn+1 andDn2 An+2κn+31tn+2 1

Re,
with leading coefficientsCn2 andDn2. The relationship is identical for all successive terms
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considered. In evaluating the magnitude of terms at each time step, all terms are compared
by ratio to their respective lead term (i.e., inviscid and viscous terms are treated separately).
The exception is the fundamental for which the lead term isA, the initial amplitude. Thus
all terms for the fundamental are compared instead to the 2nd inviscid term,C12 A3κ21t2.
For all harmonics, the resulting ratios, RatioI and RatioV , are as follows for the inviscid
and viscous terms, respectively,

RatioI =
Cnj

Cn1

[ Aκ1t ]2 j−2 (11a)

and

RatioV =
Dnj

Dn1

[ Aκ1t ]2 j−2 (11b)

with j = 2, 3, 4, . . . , J. As will be discussed,Aκ1t¿ 1. This composite factor, which
appears in brackets in (11a) and (11b), is raised to an additional power of two for each
successive higher order term being compared to the leading term. The magnitudes of the
coefficient ratiosCnj /Cn1 andDnj /Dn1 in (11a) and (11b) play a definitive role in discerning
whether a higher order term is negligible and can be excluded from the symbolic solution
at any given time step.

The filtering process implicitly requires upper numerical limits onA and1t , and a lower
limit on Re in order to evaluate the relative magnitudes of higher order symbolic terms
and to establish the range of numerical parameters for which the symbolic solution applies.
Higher order terms were eliminated if it was determined that their absence would not
compromise the cumulative accuracy of subsequent symbolic operations. Sensitivity tests
indicate that setting RatioI =RatioV ≈ 0.01 yields an effective filtering criterion. Given
this criterion, appropriate upper numerical limits were determined for the initial amplitude,
A, and the non-dimensional time step,1t , as A≤ 0.3 and1t ≤ 0.055. Because the non-
dimensional wavenumber is large, i.e.,κ = 2π , the preceding limits on1t andA assure that
Aκ1t¿ 1, which reduces the magnitude of higher order terms and enables their truncation
without compromising the validity of the symbolic solution. In fact,Aκ1t ≈ 0.1, such that
any combination ofA and1t that satisfiesA1t ≈ 0.1/2π provides similar results when
substituted into the symbolic solution. That is, a larger (smaller)A accompanies a smaller
(larger)1t , but the character of the generated waveform and the relationship between the
fundamental and harmonics remain similar. If one were to seek some combination ofA and
1t which yieldedAκ1t > 0.1, it would be necessary to retain a greater number of higher
order terms as compensation. The goal is to maximize accuracy with the symbolic solution
with a minimum number of terms.

Numerical values ofA,1t , and Re are not used, of course, in the symbolic computations.
However, once the symbolic solution is obtained, appropriate numerical values can be
substituted for1t, A, Re, andx, within their appropriate ranges, to explore numerical
implications of the solution. Note that the spatial variable,x, is also non-dimensional and
falls in the range 0≤ x≤ 1. As mentioned in Subsection 3.2, the symbolic solution of
the Burgers equation presents no upper limit to Re, but requires that Re≥ 500. Extending
the symbolic solution to lower values of Re would require retention of viscous terms of
O(1/Re)2 or higher. Symbolic computation reveals that terms ofO(1/Re)2 have the form
Enj An+2 j−2κn+2 j+11tn+2 j−1(1/Re)2, yielding a ratio of(Enj /Dnj )κ

21t (1/Re) to terms
of O(1/Re) in (8). To justify the exclusion of the higher order terms, the ratio must be small.
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A reasonable criterion is that(Enj /Dnj )κ
21t (1/Re)≈ 0.1 as an upper limit. Thus, ifEnj

andDnj were of equal magnitude, the lower limit on Reynolds number would be Re≥ 20.
However, the symbolic results indicate that a more typical representative ratio between the
leading coefficients isEnj /Dnj ≈ 40, in which case the lower limit on Reynolds number
would be Re≥ 900. Sensitivity runs with the symbolic computations, however, showed an
effective limit to be Re≥ 500. Highest order harmonics are most sensitive to the exclusion
of O(1/Re)2 terms. For longer time evolution these terms, and possibly even higher order
ones, must be retained. Therefore, it is clear that efforts exploring low Re flows would
require solution refinements. Also, current results suggest that longer time evolution with
high values of Re may confront the need to retainO(1/Re)2 terms to maintain solution
accuracy, as well. The inclusion of more terms increases the computational complexity and
intensifies combinatorial explosion. Thus, we face the irony that while numerical solutions
experience instabilities with high Re flows, the symbolic approach has difficulty with low
Re but can inherently handle flows with infinite Re. This is fortuitous because turbulent
flows at extremely high values of Re are the most elusive and interesting in research and in
practical applications.

4. SUMMARY AND CONCLUSIONS

A novel approach based on recursive symbolic computation is introduced for the ap-
proximate analytic solution of both the inviscid and viscous Burgers equations. Through
the recursive process, symbolic representations of momentum are obtained continuously in
space at discrete increments in time. Although approximate, the solution can be obtained to
arbitrary, high order accuracy. Once obtained, appropriate numerical values can be inserted
into the symbolic solution to explore parametric variations.

The symbolic computations allow examination of the solution at stages prior to combin-
ing and simplifying terms during each time step. Thus, one can gain a deeper understanding
of the precise role and character of all nonlinear interactions, viscous damping, and the
interplay between inertial and viscous mechanisms. This is not done easily, if at all, with
numerical solutions, which produce only the net effect of nonlinear interactions and other
physical processes. Likewise, the ability to readily isolate and assess the integrated indi-
vidual effects of outscatter, backscatter, and viscous damping by post-processing symbolic
results lends power over numerical methods. The same basic arguments apply in comparing
symbolic computation with traditional nonlinear analytical solutions. An added feature of
the symbolic approach is that “turbulence” manifests as a process of combinatorics, provid-
ing a fresh view to a classical problem, even though results are limited to the 1-D Burgers
equation. Based on the preliminary efforts presented, it appears that symbolic computa-
tion may be quite effective in unveiling the “anatomy” of the myriad inertial and viscous
interactions that underlie fundamental turbulent behavior.

Because of the tendency of nonlinear symbolic operations to produce combinatorial
explosion, future efforts will require the development of improved filtering processes to
select and eliminate negligible high order terms. Thus, while the preliminary results are
limited to relatively short time evolution, it is envisioned that future efforts will explore
more fully developed flows. With further research, there may be potential to extend the
symbolic computations to 2-D and 3-D studies.

The symbolic approach is superior to numerical techniques in four distinct ways: (a) its
ability to reveal and elucidate direct nonlinear interactions between waveforms, including
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the interplay between inertia and viscosity; (b) its ability to broadly explore parameter space,
most importantly variations in Re, by simple substitution of desired numerical values into
the analytical solution; (c) its ability to deal with a wide range of Re flows(500≤Re≤∞);
and (d) it produces no false dispersion or aliasing. In contrast, numerical solutions re-
quire an additional simulation for every variation in a parameter, and DNS is limited to
Re≤ 4000.

Potential applications include the development of improved subgrid scale (SGS) param-
eterizations for large eddy simulation (LES) models, and studies that complement direct
numerical simulation (DNS) in exploring fundamental aspects of turbulent flow behavior.
In that regard, the symbolic approach may overcome the low Reynolds number restrictions
faced by DNS.

APPENDIX A: QUADRATIC NONLINEAR INTERACTIONS

Simple symbolic “calculations” with the dimensional termu∂u/∂x demonstrate the gen-
eral character of quadratic nonlinearity as embodied in both the Burgers equation and the
Navier–Stokes equations. The initial valueu= Asin(κx) is assumed, where the amplitude,
A< 1, and wavenumber is defined by

κ = 2π

L0
, (A1)

in which L0 is the wavelength for the initial condition and represents the “fundamental”
wave spanning a periodic spatial domain. Applying the initial condition to the quadratic
nonlinearity yields

u
∂u

∂x
= κA2 sin(κx) cos(κx) = 1

2
κA2 sin(2κx), (A2)

in which the trigonometric identity

sinθ cosφ = 1

2
[sin(θ + φ)+ sin(θ − φ)] (A3)

can be used to show that the nonlinearity leads to a doubling of the initial wavenumber. That
is, the initial wave, or fundamental, produces a harmonic through the nonlinear process.

It can be shown in general, as implied by (A3), that the quadratic nonlinear interaction
between any two waves with respective wavenumbersκ1 andκ2 create two additional waves
with wavenumbersκ1+ κ2 andκ1− κ2 or−κ1+ κ2, noting that a sign change can occur
through a nonlinear interaction (Minorski [19] can be consulted with respect to quadratic
and higher degree nonlinearities.). That is, the nonlinear interaction produces new waves
that are larger and smaller than the original interacting waves. This can be summarized as

κlarge= κ1+ κ2 = 2π

L1L2/(L1+ L2)
(A4)

κsmall= κ1− κ2 = 2π

L1L2/(L1− L2)
, (A5)

whereL1 and L2 correspond to the two interacting waves. Their associated wavelengths
are

Lsmall= L1L2

L1+ L2
(A6)
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and

L large= L1L2

L1− L2
, (A7)

where it is emphasized that the smaller (larger) wavelength is associated with the larger
(smaller) wavenumber. The process leading to the creation of smaller waves is referred to
as outscatter. Similarly, the creation of larger waves from the nonlinear interaction between
smaller waves is termed backscatter. The two nonlinear mechanisms constitute the inertial
transfer of momentum between scales. In general, outscatter can be thought of as a produc-
tion mechanism and backscatter as a modification to existing lower harmonics. However,
because both processes constitute the inertial transfer of momentum (and energy) between
scales, neither outscatter nor backscatter add to or subtract momentum (or energy) from the
system. Thus, use of the word production here only refers to the creation of higher order
harmonics at the expense of lower order ones. Actual production to a system is through
large-scale shear or buoyancy, which are excluded in the current study.

Beyond the initial interaction of two waves in a time varying nonlinear process, the “birth”
of new waves creates a large, increasing number of nonlinear interactions as time evolves.
Symbolic computation provides an effective tool to explore the intricacies of such a large
number of nonlinear interactions in a study of developing 1-D “burgulence.”

APPENDIX B: ISOLATING OUTSCATTER, BACKSCATTER, AND VISCOUS DAMPING

In this appendix, a method is developed to isolate and integrate the individual effects of
outscatter, backscatter, and viscous damping at each discrete time step in the symbolic solu-
tion of Burgers equation. The method is applied to the solution in a post-processing fashion.

The solution at each discrete time level can be expressed as

u(x,m1t) = F1 sin(κx)+ F2 sin(2κx)+ F3 sin(3κx)+ · · · + FN sin(Nκx), (B1)

in which all terms associated with the amplitude of each respective harmonic are lumped
into the symbolsF1, F2, F3, etc., rather than kept in expanded form. Symbolic integration
to the next time level is achieved by substituting (B1) into the forward-in-time algorithm,
(7a), to yield

u(x, (m+1)1t)=u(x,m1t)+κ1t
N∑

n=1

n

2



outscatter

−
(∑L p

l=1 Fl F|l−n| − 1
2 F2

n/2

)
backscatter

+
(∑Lb

l=1 Fl Fl+n

)
viscous damping

−(2n κ
ReFn

)


sin(nκx),

(B2)

in which n= 1, 2, 3, . . . , N corresponds to the individual harmonics, and the subscript
l = 1, 2, 3, . . . , L p or Lb represents the amplitude pairs involved in outscatter or backscatter
for each harmonic of the solution. In generalL p 6= Lb, and L p and Lb differ from one
harmonic to the next. The outscatter, backscatter, and damping terms have been identified
in (B2). The term1

2 F2
n/2 is applied only to production by outscatter of odd harmonics
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(i.e., whenn is even) and is excluded for even harmonics (whenn is odd). The individual
mechanisms for each harmonic are separated as

outscatter= −κ1t
n

2

( L p∑
l=1

Fl F|l−n| − 1

2

(
F2

n/2

)
n=even

)
, (B3)

backscatter= κ1t
n

2

(
Lb∑

l=1

Fl Fl+n

)
, (B4)

and

viscous damping= −κ21tn2 1

Re
Fn. (B5)

The expressions (B3), (B4), and (B5) reveal the specific pairs of interacting harmonics that
modified a given harmonic in achieving its amplitude at the current discrete time level.
By way of example, if we consider the 3rd harmonic, thenn= 4 and production due to
outscatter from lower order harmonics is−2κ1t{F1F3+ 1

2 F2
2 }, and the backscatter from

higher order harmonics is 2κ1t{F1F5+ F2F6+ F3F7+ · · ·}. Note thatL p= 2 because
only the harmonic pairs (1, 3), (3, 1), and (2, 2) can produce the 3rd harmonic, whereas the
value ofLb is theoretically unlimited because any two harmonics that differ in wavenumber
by 4κx interact to yield backscatter (see Table III). However, only a small number of
backscatter interactions have magnitudes large enough to have a significant effect. Viscous
damping at each time step for the 3rd harmonic is−16κ21t 1

ReF4. To quantify the outscatter,
backscatter, and damping, numerical values forA,1t , and Re are inserted into each term
comprising the amplitudesF1, F2, F3, etc. Best accuracy is achieved by averaging the
numerical values ofF for the preceding and current time levels. In closing this discussion,
it is important to emphasize that (B2) is not used to compute the symbolic solution to
the Burgers equation. Instead, it is used solely to develop the algorithms necessary to post-
process the symbolic solution in separating and analyzing the integrated effects of outscatter,
backscatter, and viscous damping for each time step.
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