Journal of Computational Physi&§2,219-244 (2000) ®
]
doi:10.1006/jcph.2000.6533, available online at http://www.idealibrary.col DE &l.

A Preliminary Study of the Burgers Equation
with Symbolic Computation

Russell G. Derickschand Roger A. Pielke, Sr.

*R. G. Derickson and Associates, 224 Cypress Circle, Broomfield, Colorado 8flD@partment
of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado 80521
E-mail: rgderick@aol.com, pielke@hercules.atmos.colostate.edu

Received October 4, 1999; revised May 2, 2000

A novel approach based on recursive symbolic computation is introduced for the
approximate analytic solution of the Burgers equation. Once obtained, appropriate
numerical values can be inserted into the symbolic solution to explore parametric
variations. The solution is valid for both inviscid and viscous cases, covering the
range of Reynolds number from 500 to infinity, whereas current direct numerical
simulation (DNS) methods are limited to Reynolds numbers no greater than 4000.
What further distinguishes the symbolic approach from numerical and traditional
analytic techniques is the ability to reveal and examine direct nonlinear interactions
between waves, including the interplay between inertia and viscosity. Thus, prelim-
inary efforts suggest that symbolic computation may be quite effective in unveiling
the “anatomy” of the myriad interactions that underlie turbulent behavior. However,
due to the tendency of nonlinear symbolic operations to produce combinatorial ex-
plosion, future efforts will require the development of improved filtering processes
to select and eliminate computations leading to negligible high order terms. Indeed,
the initial symbolic computations present the character of turbulence as a problem
in combinatorics. At present, results are limited in time evolution, but reveal the
beginnings of the well-known “saw tooth” waveform that occurs in the inviscid case
(i.e., Re=00). Future efforts will explore more fully developed 1-D flows and in-
vestigate the potential to extend symbolic computations to 2-D and 3-D. Potential
applications include the development of improved subgrid scale (SGS) parameteri-
zations for large eddy simulation (LES) models, and studies that complement DNS
in exploring fundamental aspects of turbulent flow behaviag 2000 Academic Press
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1. INTRODUCTION

The Burgers equation, first presented by Bateman [2] and named after Burgers [5
has been explored throughout the years to test numerical algorithms and to explore
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turbulence, often referred to as “burgulence.” Indeed, fundamental knowledge about
nature of certain turbulent processes (e.g., Burgers [5, 6], Lighthill [18], Blackstock [3]) |
been gleaned from the Burgers equation. Despite its fundamental nonlinearity, closed-
analytical solutions have been obtained for the Burgers equation for a wide range of in
and boundary conditions (e.g., Whitham [22], Hopf [17], Cole [9], Fletcher [13, 14]). The
analytical solutions serve as benchmarks for numerical solutions, but also provide insi
in their own right. Several current studies of turbulence in which the Burgers equation pl
a dominant role underscore its ongoing critical relevancy within the scientific commun
(e.g., Gotoh and Kraichnan [15], Chen and Kraichnan [&t &.[11], Gurbatowet al.[16],
Bouchauckt al.[4], Avellanedaet al.[1], and Chekhlov and Yakhot [7]).

The essence of turbulence is embodied in the quadratic, nonlinear convection tern
the general, 3-D Navier—Stokes (N-S) equations. Turbulence is a fully three-dimensic
phenomenon, and, as such, can be understood completely only with a 3-D view. Howe
the Burgers equation, although 1-D, possesses a fundamental quadratic nonlinearity
is viewed as an appropriate starting “model” for studying turbulence. In fact Fletcher [:
describes howthe 1-D Burgers equation is suitable not only to explore and validate nume
models but also serves as a reasonable means to study such physical processes as
waves, acoustic transmission, traffic flow, turbulent flow in a channel, compressible fl
turbulence, supersonic flow around airfoils, wave propagation in a thermo-elastic medi
and the dynamics of bubbles in a liquid.

In this paper, a new approach developed by one of the authors (Derickson [10]) is |
sented in which symbolic computation is employed to obtain approximate analytical sc
tions to the Burgers equations. Through a recursive process, symbolic representatio
momentum are obtained continuously in space at discrete increments in time. Once
tained, appropriate numerical values can be inserted into the symbolic solution to exg
parametric variations. The solution is valid for both viscous and inviscid cases, covel
the range of Reynolds number from 500 to infinity. Unlike numerical approaches, high
flows present no difficulty to the symbolic method and, in fact, require less computatio
effort than solutions at low Re. This is both ironic and fortuitous because high Re flows
least understood and most in need of further study. Similarly, the symbolic method indu
no aliasing or false dispersion of waves, because the solution is analytic and continuot
space. To the best of the authors’ knowledge, symbolic computation, although it has t
used widely in other areas (e.g., Socettal. [21]), has never been undertaken in the stud
of fluid turbulence.

A particular distinguishing feature of the symbolic approach is its ability to reveal tl
direct nonlinear interactions between waves and the interplay between inertia and visc
at all spatial scales, including the small, dissipation scales. Such an approach finds relev
in the study of the basic fluid mechanics of turbulence and potentially could enhance
use of direct numerical simulation (DNS) in exploring fundamental turbulent processe:
the inertial sub-range and dissipation scales. Large eddy simulation (LES) models, w
are becoming the “workhorse” in both research and practical studies of geophysical
engineering flows, are in urgent need of better parameterizations of turbulence at sub
scales (SGS) where inertia and dissipation interact. Symbolic computation of turbule
may lead to the development of improved SGS representations.

The preliminary results presented in this paper demonstrate the potential insights gz
by the symbolic computation of the Burgers equation. However, due to the prodigic
number of terms generated by nonlinear interactions in the symbolic explorations,
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limitations in computer power and memory, the initial effort was necessarily limited
scope. With accrued experience in use of the symbolic approach, and access to g
computing power, future efforts can greatly expand the preliminary results. What is r
viewed as classic work by Feigenbaum [12] in the study of chaos in one-dimension (1.
numerical computations revealed patterns and universal numbers that became the bac
of chaos theory. Analogous insights, patterns, and universal relationships in fluid tul
lence potentially may be discovered by expanded use of symbolic computation. Wh:
particularly encouraging about advances in symbolic software programs and in comg
hardware since Feigenbaum'’s studies of chaos in the early 1970s is the potential to ex
2-D and 3-D cases.

2. THE BURGERS EQUATION

2.1. The viscous Burgers equatioriThe viscous Burgers equation for veloclty=
Up + u, whereUg is a constant and is viscosity, is
au au 02u
— =—Up+u)— +v—. 1
ot~ ot Wy e @
The equation includes the local time derivative of momentum, the nonlinear convection t
(i.e., a quadratic nonlinearity), and the second order viscous diffusion term. The equé
does not contain a pressure derivative term, unlike the general Navier—Stokes equat
Solutions to (1) experience a decay of momentum (hence, decay of kinetic energy)
time due to the effects of viscosity.
Casting the equation in non-dimensional form yields

au’ au’ 92U
=—(1+Uu)— Re’l—,
at/ 3+ )8x/ + ax’?

)

where the various non-dimensional variableswre u/Ug, Ug=1, X' =X/Lg, t'=tUg/
Lo, and Reynolds number, ReUgLo/v. Lg is a characteristic scale length, which corre:
sponds to a periodic spatial domain in the current study.

2.2. Theinviscid Burgers equationThe inviscid Burgers equation, in non-dimensiona

form, is simply

ou’ ou’

— =—1+Uu)—, 3

Py A+u)— 3)
in which the second order viscous term in (2) has been excluded. This is equivaler
Re=co. The inviscid equation contains the essential quadratic nonlinearity, but no visc
damping. Thus any solution to this equation must conserve momentum and kinetic en
with evolution in time.

2.3. Analytic solutions of the Burgers equatiorSeveral closed-form analytic solutions
have been found for the Burgers equation for a wide range of initial and boundary conditi
(Whitham [22], Hopf [17], Cole [9], Fletcher [13, 14]). Fletcher [14] provided the following
solution for the non-dimensional viscous Burgers equation,

uex. t) =/°° ng exp{—o.SReF}dg//oo exp(—0.5 ReF} dE, 4)

[ee]
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Exact Analytic Solution to Viscous Burgers Equation

Amplitude
© o o
> O o

o
[N}
.

o

-1
-0.8
0.6
-0.4 ]
0.2 ]

FIG. 1. Schematic of exact analytic solution of viscous Burgers equation at non-dimensionaithe?2,
for Re=10 and Re=100. Discontinuous initial condition &t= 0 indicated by bold dashed line.

where F(&; x,t) = fog Uo(&") d&’ +0.5(x — £)?/t. The initial conditions onu(x, t) are
given byup(X) =u(x,0) ={1if -1 <x<0;0r0if0< x < 1.}, and the boundary conditions
areu(—1,t) =1andu(l,t) =0. The solution appliestel < x < 1fort > 0. In (4),u(x, t)
represents a slightly different formulation compared to (2), inttiat t) is the total veloc-
ity. Fletcher’s solution is based on a discontinuous initial condition, as displayed in Fig
but a multitude of other initial conditions are possible.

A sharp wave front is maintained over time for high values of Re, but is smoothec
low Re. Such a front would also develop with a smooth initial condition such as a sinus
in a periodic domain (e.g., Derickson [10], Fletcher [14]): the higher Re, the steeper
front. The front represents a balance between the creation of small waves through quac
nonlinear interactions and dissipation due to viscosity. In the limit of no viscosity (i.
Re=00), a sharp “saw tooth” wave forms in the periodic domain.

Analytic solutions such as the preceding serve to elucidate the effect of certain param
variations and have been used as benchmarks for numerical schemes. However, they (
unveil the details of the nonlinear interactions underlying the solution.

3. SYMBOLIC COMPUTATION OF THE BURGERS EQUATION

3.1. Initializing and performing the symbolic computationBoth the viscous and in-
viscid versions of the non-dimensional Burgers equation, (2) and (3), are computed syn
ically on a periodic spatial domain with a non-dimensional length of unity (i.e., the origir
dimensional domain length isp.). A smooth sinusoidal function is specified as the initia
condition, or fundamental, for the momentum,

u'(x’, 0) = Asin(k'x), (5)

which has a non-dimensional wavelength of unity, corresponding to the length of the peri
spatial domain. Unlike the analytical solution presented in Subsection 2.3, which assu
a discontinuous initial state, a smooth initial condition has been assumed here. The ir
is to observe the creation of higher order harmonics and not assume them at the start.

Prior to performing the computations, it is useful to eliminate the non-dimensional cc
stant velocity of unity in (2) and (3) to simplify computational results. Through a Galilez
transformation this is equivalent to following the steep wave front generated by the quadi
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nonlinearity of the equation and eliminates a large number of terms that would result
erwise from the symbolic operations. Thus, (2) and (3) are modified to

au’ 8u 32U
— = Rel—, 2a
at’ Yax + ax’? (22)
and
ou’ ou’
=-Uu—. (3a)
ot’ ox’

Integration of (2a) over a discrete time increment leads to the following exact, recur:
expression, where the primes denoting non-dimensional variables have been droppe
convenience,

At

2
ut = ur At w2 et DY) ®)
Yax ax2

The integration of (3a) differs only in the omission of the viscous term. InX6)s the time
increment, the superscript and overbar of the bracketed terms represent the time av
over the time increment, andcorresponds to the time step, in whichk= 0 initially. Thus,
recursive application of (6) represents an exact analytic solution at discrete timarsidps,
wherem is a positive integer.

An iterative technique was developed to approximate (6), using a trapezoidal time ave
ing operator, in which equal weighting is given to the new and old time steps (i.e., effectiv
a Crank—Nicolson implicit approach applied to the symbolic integration). Symbolic co
putation of the spatial terms proceeds in a straightforward manner for each iteratio
a given time step. To begin each time step in the recursion, the first iteration utilize
forward-in-time operator as

9%

e (7a)

urtl = ut + At ug——l—R
That is, the time average of the bracketed derivative terms in (6) is initially approxima
by the symbolic representation at time levelThenu®*2, the first iterative value ofi**2,
is obtained from (7a), and spatial derivatives are computed for time teyel, based on
uz*l. In the second iteration, the time average of the derivative terms is approximatec
the arithmetic average of their symbolic representationsaaidr + 1 to obtain an updated
symbolic version oti**1, as

At au 92u au 92u, 1"
Tyt = Re?! - * 4 Ret . (7b
Y u+2{[a+ 8X2]+[ 2y Re 82] (7b)

Spatial derivatives at the+ 1 time level then can be updated, with values attHevel

being held constant, and the iterative process can be repeated with (7b). However, ser
ity tests with multiple iterations suggest that a single trapezoidal averaging applicatio
sufficient. That is, only one forward-in-time and one trapezoidal computation are neces
at each time step. Additional iterations primarily produce higher order harmonics of n
ligible magnitude rather than improve solution accuracy. The overall procedure is app
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recursively to obtain symbolic representations for each succeeding time leval! %.,
u™+3, etc. The use of the iterative procedure yields a highly accurate, approximate ana
solution to the Burgers equation at the discrete time levels. Arbitrary accuracy is achie
by truncating only negligible high order terms during each time step.

As will be discussed in greater detail in Subsection 3.3, the symbolic computati
produce an increasing number of terms with each successive time step. After a few
steps the number of terms becomes massive (i.e., combinatorial explosion) and it is ther:
routinely necessary to select and eliminate (i.e., filter) negligible terms of higher or
during symbolic operations within each time step. To ensure that eliminated terms
indeed negligible, it is necessary to establish upper numerical limitd and At, and a
lower limit on Re, points that will be addressed in Subsection 3.5.

3.2. Overview of computational resultsThe symbolic solution of the Burgers equation
was computed for seven discrete, non-dimensional time steps, which was sufficier
simulate the beginnings of the classic “sawtooth” waveform. It is important to emphas
that the seven non-dimensional time steps with the symbolic computations are equivale
approximately 90 such time steps in a comparable numerical solution. This estimate is b
on comparisons to numerical simulations of the Burgers equation performed by Derick
[10]. Whereas the magnitude of the time st&p, in numerical schemes is limited by severe
restrictions on the upper bounds of the Fourier and Courant numbers, the symbolic solu
which is continuous in space, has no equivalent limitation. However, the ability to maint
solution accuracy while excluding negligible high order terms does restrict the numer
magnitude ofAt that can be applied to the symbolic solution.

A very significant advantage of the symbolic approach over comparable numerical m
ods is that a numerical solution represents only a single parameter value (e.g., one \
of Re), whereas the symbolic solution, being analytic, represents an infinite numbe
parametric variations. Also, the lack of restriction on an upper limit of Re in the symbo
method adds a crucial advantage over numerical counterparts, such as DNS which s lir
to Re<4000.

All symbolic computations were performed with the MAPLE symbolic engine (Redfe
[20]). Computations were done in a manual, interactive mode on a 90-MHZ PC, wh
possessed 32 megabits of RAM. To compute seven time steps took approximately 10
utes, most of which were consumed by manual operations, computer I/O operations,
visual assessment of results at each intermediate symbolic operation. Actual comput
time is estimated to be about 2 to 4 minutes. Future efforts with more computational po
and memory, and with a fully automated computational process, will greatly extend
preliminary results reported in this paper.

Table | presents the symbolic results for the 1st and 3rd time steps, showing the birth
growth of harmonics and the decay of the fundamental with time. The table also reveals

general form of the solution for each discrete time lemeht (m=1,2,3,..., M),
N
u(x, MAt) = Fy sin(nkx), (8)
n=1
where

J J
Fn = { Z an AN2i=2,.n+2]=3 A tn+2] -3 + Z Dnj An+2j—2Kn+Zj—1Atn+2j—2%a}
j=1 j=1



SYMBOLIC COMPUTATION OF THE BURGERS EQUATION 225

TABLE |
Results of Symbolic Computation of the Burgers Equation for 1st and 3rd Time Steps

[A] 1st Time Step

Forward-in-time iteration
1 . 1 .
u(x, At) = {A— AKZAt%} sin(xx) — EAZKAt sin(2« x)

Trapezoidal iteration
1 1 1) . 1 3 1
u(x, At) = {A - éA3K2At2 + (—szm +3 A3K“At3) R—e} sin(kx) + {—5 A2 At + > A2K3At2R—e}
x sin(2cx) + {§A3K2At2 — §A3K“At3i } sin(3kx) — }A4K3At3sin(4fcx)
8 8 Re 8
[B] 3rd Time Step
Trapezoidal iteration
9 3 75 383 1
J3AL) = $ A— S ACAL? — — ASkAALY (—3AK2At —AAAL 4+ A GAtS) —} sin
u(x ) { 8K 32K + +8 K +32 K Re iN(k X)

3 67 27 5175 1
—Z A% At + AAMCALE — — ASKSALS (—AZ SAt2—BAAMC At — A8 7At6) —}
+{ pNrAt+afx 128" AT (A x 128 ¢

Re
27 801 261 417 14349
sin(2cx AKPALE — S ASKA ALY+ T ATKOALS ( — A%ALS ASkBALS
X (K)+{8 K 6a K +64 K + 8 +64 K

11145 1 67 1151 553
by \PLYN £ )—}sin3 X {——A“ SALS 4+ O ANKSALY — = AT ALY
* 128 Re J SNEX) +  —g A 32 E7 RN

363 24567 3747 1
203 s At — S0 ps T are _ 210 ps o a g )—}s'n4K
+( 2 32 64 Re J SNAX)

1365 6175 513265

5 4 4 7,6 6 9 .8 8
Toa KA = S S AL + = e AL .
* 36545 292585 11108435 1 (S
5.6 5 7,8 7 9 .10
( oz NHOAL + = s AL — = o= Ak At)Re
6855 ; s 22233 . . (209829 6 7..6 2263035, , ) 1 } _
{ 128A AP+ ——— 128 Al At + 3 A’k "At°— A’k” At Re Sin(6k X)
is the amplitude of each harmonic at the discrete time levet; n=1,2, 3, ..., N corre-
sponds to the fundamental and each harmonic up toNhe 1)st harmonic; and the index
1=1,23,...,Jcorresponds to the respective terms associated with the fundamental

each harmonic. The fundamental is denoted byksin@nd the odd and even harmonics
are denoted by s{ii2n)x x} and sif(2n + 1)k x} , respectively. Thus, s{@« x) corresponds
to the 1st harmonic and siBxx) corresponds to the 2nd harmonic, &; and Dy, all
of which are rational numbers, are the respective leading coefficients for each inviscid
viscous term. For convenience of analysis, the terms are viewed as inviscid-viscous f
(Chj, Dnj), inwhich each pair of terms is denoted by its leading coefficients for expedien
Table | shows that at each time step the leading coeffici@qjsand Dy;, of all existing
terms change, and new terms are added to the fundamental and each harmonic th
the symbolic computations. The table represents a filtered solution in which neglig
higher order terms were excluded during computations. As can be observed in the t
leading coefficients can become quite large, complicating the issue of discerning neglic
terms. The coefficients are rational numbers, which preserve solution accuracy. MAI
can handle extremely large integers (500,000 digits), so large leading coefficients are
computational problem.
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The symbolic solution represents an approximate, spatially continuous analytical solu
of high order accuracy at discrete time levels. The forward-in-time iteration (FI) is includ
for the 1st time step in Table | to elucidate the process of solution improvement. O
the final, or trapezoidal, time iteration (TI) is shown for the 3rd time step. In gener
higher order terms are affected most by the second iteration in the symbolic computati
a characteristic common to numerical iterations. Results for the inviscid Burgers equa
differ from the tabulated viscous solution only in the exclusion of all terms containing F
Symbolic computations are quicker and easier to perform for the inviscid case due to
absence of the viscous terms, which cause considerably greater combinatorial interac
However, the inviscid case, which corresponds to infinite Re, does notinduce the instabil
inherent to numerical solutions at high Re.

The symbolic solution does not produce false dispersion of waves or aliasing, nor reg
an upper bound on Re. These are significant issues in numerical methods. The analyti
ture of the symbolic solution, which is continuous in space and discrete in time, preclu
false dispersion and aliasing and any restriction on maximum allowable Re. These |
nomena are known to be associated with spatial discretization in finite difference mett
(e.g., Derickson [10]). Spectral methods, while producing minimal false dispersion, req
dealiasing at each computational time step (e.g., Fletcher [14]). Spectral DHS methods
are restricted to Re values of no greater than 4000.

As will be elaborated in Subsection 3.5, the viscous solution is valid only for Re abov
lower limit of 500. For the solution to remain valid below this lower threshold, alarge numt
of symbolic terms containing higher order powers of Reust be retained in the symbolic
computations, resulting in much greater computational expenditure. This happenstan
ironic in contrast to the difficulty numerical solutions face as Re increases from smal
large magnitudes, the latter of which represent the more interesting regimes of turbu
flow, in general.

Figures 2 and 3 show the evolution of the symbolic solution foeR00 and Re= oo
(i.e., the inviscid case), respectively. The initial condition and the 3rd and 7th time st
are shown. Values oA =0.3 and At =0.055, which were determined to be appropriate
upper numerical limits on the amplitude factor and non-dimensional time step to maint
solution validity, are reflected in the figures. The figures reveal the decay of the fun
mental and the growth of harmonics, yielding a net waveform that is tending toward
well known “sawtooth” shape produced in solutions to the Burgers equation at high |
Figure 2, corresponding to Re500, shows greater damping of the fundamental and slow
growth of the harmonics with time. However, the differences between the two cases bec
visibly discernible in Figs. 2 and 3 only at the 7th time step. As revealed in Table | a
Figs. 2 and 3, the fundamental and the even harmonics have positive amplitudes an
odd harmonics have negative amplitudes. This alternation of sign is more clearly show
Fig. 4, which displays the growth of the harmonics with each successive time step. |
ure 4 also more clearly shows the greater harmonic magnitudes feroBeompared to
Re=500.

3.3. Combinatorics of nonlinear interactionsln the symbolic solution, the quadratic
nonlinear interactions at each time step correspond to symbolic multiplication betw
momentum, represented by (8), and its derivativeu'.?g.,, in which multiplications between
all possible combinations of existing harmonic pairs are performed pair by pair. Referr
to Appendix A and (8) for elucidation, a single nonlinear multiplication between any tv
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FIG.2. Time evolution of fundamental and 1st through 5th harmonics in symbolic computation of the Burg
equation for Re=500. Non-dimensional amplitude factor and time step/£e0.3 andAt = 0.055, respectively.

harmonics can be represented by the general form

Lo AM+2ii=2 An2+212-2 gin(n, ) cogNok )
1 o
=3 L Antnz+20iti2=D1gin(ny + ny)k + sin(ng — Ny)«], 9)
where L. is the leading coefficient, the ordered pair;, n;) denotes the respective
wavenumbers of the two interacting harmonics, gndind j, represent the particular
term associated with each harmonic, that is, its leading term, or its 2nd or 3rd term,
(refer to Table | and (8) for clarity). As explained in Appendix A, the termrsinf ny)«
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FIG.3. Time evolution of fundamental and 1st through 5th harmonics in symbolic computation of the Burg
equation for infinite Re. Non-dimensional amplitude factor and time stef &r.3 andAt = 0.055, respectively.

in (9) represents outscatter, or “production” of a higher order harmonic, and sing,)«
represents backscatter to a lower order harmonic.

In general,j; # j» more frequently than; = j,. If a multiplication involves the leading
term for each harmonic in the pair, th¢pn= j, = 1. The multiplication represented by (9)
may involve two inviscid terms, two viscous terms, or one inviscid and one viscous te
such that any one of the following four combinations is possible for the resulting lead|
coefficient,L¢: Lo = CnleCnZiz, Lc=Dn,;, Dn,,,. Lc= Cnljl Dn,,, orLc= Dnljlanjz‘ The
wavenumbery, and the time increment\t, have been omitted as factors in (9) because
referring to (8), their respective powers depend on whether inviscid or viscous terms,
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FIG.4. Amplitudes of 1stthrough 10th harmonics at each of seven discrete time steps in symbolic comput:
of the Burgers equation for (a) Re500 and (b) infinite Re. The artifice of continuous curve fitting between discre
harmonics helps to clarify harmonic growth in time.

mix, are involved in the multiplication. Their inclusion is not essential for the discussi
at hand. Three possibilities exist for a nonlinear interaction between two harmonics re
sented by the ordered paini, n,): (i) ny > ny, in which case the outcome of backscatte
has a positive sign, (if); < n,, backscatter is negative in sign, and (jii)= ny, which rep-

resents a self- interaction of a harmonic (or the fundamental), producing outscatter bt
backscatter. Outscatter is identical for cases (i) and (ii). Each nonlinear interaction betv
a given pair(ny, ny) produces both outscatter and backscatter, with the exception of ¢
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TABLE Il
Example of Terms Produced by Nonlinear Interaction and Their
Simplification (11 Terms Produced in 2nd Iteration of 1st Time Step
in Symbolic Computation)

(1) A%k sin(kx) cogkx) = %Azk sin(2kx)

A
(2) —2A%3t Rsin(kx) cogkx) = —Az{k3t} Rsin(2kx)
{B} {cy*
(3) —A%K?t sin(kx) cog2kx) = —%A3k2t sin(3kx) + %A3k2t sin(kx)
{B} {cr*
(4) f%A3k2t sin(2kx) cogkx) = f%A3kzt sin(3kx) — leA3k2t sin(kx)
{D} (EY*
(5) %A3k“t2Rsin(2kx) cogkx) = ‘—11A3k“t2Rsin(3kx) + %A3k4t2Rsin(kx)
(6) %A“k3t2Rsin(2kx) cog2kx) = %A4k3t2Rsin(4kx)
(7)  A%kSt?R? sin(kx) cogkx) = %Azkstszsin(ka)
{D} =k

(8) AKk*t?Rsin(kx) cog2kx) = izl A3K*t2Rsin(3kx) — % A’K*t2R sin(kx)
(9) AkK?Rsin(kx) = same

(10) —AK*‘tR?sin(kx) = same

(11) —2A%3tRsin(2kx) = samgA}

* Denotes backscatter.
Note.A, B, C, D, and E denote terms with common factors.

(iii), and the resulting amplitudes are identical for outscatter and backscatter, as refle
in the amplitude factor on the RHS of (9),

amplitude factor= AN Hn2+201+12-2), (10)

A simple example elucidates the great number of multiplicative combinations that al
in the symbolic computations. If at the beginning of a given time step there are 6 f
monics, plus the fundamental, and each has 4 terms, then there are a to6ataf 4= 28

terms representing momentum. Therefore, the momentum multiplied by its derivative yie
28% = 784 quadratic terms at the new time step. Additionally, 28 linear terms are gener:
from the second order term in the Burgers equation, for a total of 812 terms. Table Il displ
the 11 resulting terms produced by symbolic computation of the Burgers equation at
second (i.e., final) iteration of the 1st time step. At this point, the total number of term:
quite small compared to subsequent time steps when combinatorial explosion occurs.
shown in the table are the conversion of quadratic terms through use of a trigonome
identity, as described in Appendix A, and the combination of like terms. Outscatter ¢
backscatter are denoted in the table. The first eight terms shown in the table result 1
nonlinear interactions and the last three terms stem solely from the linear viscous term o
Burgers equation. An important aspect identified in the table is that the second term, w
is a nonlinear inertial term, combines with the last term, a strictly linear term stemm
from viscous damping. Thus, the interplay between inertial and viscous terms is revea
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The integer exponent of the amplitude factor, (10), embodies complex combination
harmonic interactions. Signifying the exponenttas-n; + ny + 2(j1 + j» — 2) , several
scenarios can be explored. If only the leading terms of an interacting harmonic pair
considered, thep = j, = 1, and the exponentreducedie- n; + n,. Various wavenumber
pairs,(ny, ny), potentially comprisde. Obviously, the higher the value & is, the greater
the complexity. Except when; =n,, each ordered paitn;, ny), has a counterpart pair,
(n», nq), with the two elements in reversed order. This is evident in Table Il, which sho
that the companion pairs exist in separate terms that may or may not have common
or multipliers. One pair of the set potentially yields an opposite sign in backscatter, wt
does not in general lead to canceling effects, as seen in the taihje=H,, no backscatter
is produced, as previously explained.

If other than leading terms are considered inthe preceding analysig (i#€l,andj, # 1),
then the scenarios involving the exponent of the amplitude factor become more comj
but follow a similar line of reasoning. For example, assujpg 1 and j, #1 in (10).
Sinceny +ny; = E — 2(j1 + j2 — 2), settingE =14 andj; + j, =5 yieldsn; + n, =8.
The companion harmonic pairs (i) (2, 6) and (6, 2), (ii) (3, 5) and (5, 3), and (iii) (4,
satisfy the criteriom; + n, = 8. But for each of these, the following combinations of tern
pairs, [i1, j2], satisfy j1 + jo=5:[1, 4], [4, 1], [2, 3], and [3, 2] in which element order in
each pairisimportant. Because there are a total of 5 harmonic pairs, and 4 term pairs for
harmonic pair, a total of 20 interactions satisfy the criterioa- 14. All of the harmonic
pairs produce outscatter to the 7th harmonic, becaysen, =8, but the harmonic pairs
(2, 6) and (6, 2) produce backscatter to the 3rd harmonic. The pairs (3, 5) and (5, 3) pro
backscatter to the 1st harmonic, and (4, 4) produces no backscatter. It is evident the
a large and complex combination of harmonic interactions at play in the solution to
Burgers equation.

Table Il displays combinations of nonlinear harmonic interactiong,n,), that poten-
tially produce outscatter and backscatter in the fundamental and the 10 harmonics proc
in the symbolic solution. However, the companion harmonic pairs denotéa,bg) are
omitted for presentational convenience, but self-interactions denoted £y, are in-
cluded. Note that outscatter combinations are fewer in number compared to backsc
combinations, and that the fundamental only experiences backscatter. However, sol

TABLE IlI
Combinations of Harmonic Pairs Producing Outscatter and Backscatter for Fundamental
and Various Harmonics

Affected Outscatter Backscatter

harmonic combinations combinations
Fundamental ~ None 1,2) (23) (34) (@45 (5.6) (6,79 (7,80 (89 (9109
1st harmonic (1,1) 13) (24) (35 (46) ((b,79 (6,8 (7,9 (8,10) (9,11)
2nd harmonic  (1,2) 1,4 (25 (36) 47 (58 (6,9 (7,100 (8,11) (9,12)
3rd harmonic  (1,3) (2,2) @5 26) 37 (48 (59 (610 (7,11) (8,12)
4th harmonic ~ (1,4)  (2,3) @6) (2,7 (38 (49 (510 (6,11) (7,12) (8,13)
5th harmonic  (1,5) (2,4) (3,3) @7 (2,8 (39 (4100 (511) (6,12) (7,13)
6th harmonic  (1,6) (2,5) (3,4) 1,8 (29 (3100 (4,11) (512) (6,13) (7,14)
7th harmonic  (1,7) (2,6) (3,5) (4.4) (1,9 (2,100 (3,11) (4,12) (5,13) (6,14)
8th harmonic  (1,8) (2,7) (3.6) (4,5 (1,10) (2,11) (3,12) (4,13) (5,14) (6,15)
9th harmonic  (1,9) (2,8) (3,7) (4,6) (5,5) (1,11) (2,22) (3,13) (4,14) (5,15)

10th harmonic  (1,10) (2,9) (3.8) (4,7) (5.6) (112) (213) (3.14) (4,15) (5,16)
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results presented in Subsection 3.4 show that most backscatter combinations are of 1
gible consequence. In contrast, all outscatter combinations are found to be significant
the strongest effect always involves the fundamental.

The preceding analysis provides a framework to analyze and interpret the results
duced by the symbolic computation of the Burgers equation. Referring to (8), each of
J inviscid andJ viscous terms comprising the amplitudg,, of each harmonic in the
symbolic solution is itself a composite which embodies outscatter, backscatter, and
cous damping that result from potentially large numbers of interacting harmonic pairs
is instructive to examine individual effects that lead to each composite tefp oy in-
vestigating intermediate symbolic operations during each time step, similarly to what\
described for Table Il. Such a task is useful, in general, for identifying and studying ve
ous nonlinear inertial interactions, linear damping mechanisms, and the interplay betw
inertia and viscous damping. However, experience indicates that it would be inefficie
if not intractable, to use the intermediate symbolic operations if the goal is to isolate :
assess the integrated individual effects of outscatter, backscatter, and viscous dampi
each individual harmonic. Therefore, an efficient, supplemental method is develope
Appendix B to achieve the desired result of isolating and separately evaluating the eff
of these three key mechanisms.

3.4. Detailed symbolic results: Analysis of outscatter, backscatter, and viscous damp
In viewing the symbolic results embodied in Tables I and I, itis useful to explore the func
mental and various harmonics separately. At each time step, the symbolic solution, whi
in the form expressed by (8), is post-processed using the method presented in Appent
in which the following numerical upper limits are appliedl= 0.3, andAt =0.55. The
process of determining appropriate numerical values is described in Subsection 3.5.

Figures 5-8 show the evolution of the fundamental and the 1st, 3rd, and 10th harmo
over the seven computed time steps. The fundamental and specific harmonics were cl
to enable a broad analysis and interpretation of the fundamental results of the symt
solution. The symbol€y, , and B, _n, are employed in the figures to represent the
outscatter (i.e., production) and backscatter, and the specific harmonic pairs leadin
each effectO,et and Byt denote the net effects of outscatter and backscatter. The visce
damping of the fundamental and three harmonics is shown separately on the figures
labeled explicitly. Each figure shows results for (a)-R800 and (b) Re= co. Care must be
exercised in comparing Figs. 5-8, because the vertical scales differ between each figL
accommodate the range of magnitudes of the outscatter, backscatter, and damping for
respective harmonic being displayed. For direct comparison between harmonics, the re
is referred to Figs. 4 and 9 in which all harmonics are displayed on the same vertical s

Figure 5 displays solution results for the fundamental. The greatest backscatter, der
by B;_», stems from the nonlinear interaction between the 1st harmonic and the fun
mental itself. Secondary backscatter occurs through interactions between the 1st anc
harmonics,B,_3, and between the 2nd and 3rd harmoniBs,s. Backscatter also results
from interactions between the 3rd and 4th harmonics and other higher order pairs diffe
by inwavenumber, but those interactions are negligible and not shown on the figure. W
Re=500, viscous damping exceeds the primary backscatter in magnitude up until the
time step, beyond which the backscatter increases significantly in magnitude due to the |
growth of the 1st harmonic. The effect of damping slowly decreases with each time ste
the amplitude of the fundamental decreases, but always exceeds the secondary backs
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Fundamental
{a) Re = 500
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0 === B34
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Damping
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(b) Re = Infinite

0.001
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FIG.5. The time evolution of the fundamental at each of seven discrete time steps in symbolic computatic
the Burgers equation for (a2) Re500 and (b) infinite Re. Displays backscattey;-B, resulting from interactions
between specific harmonic pairs; (n,), and damping due to viscosity. Example Brepresents backscatter due
to interaction between 1st and 2nd harmonics.

In all cases, both damping and backscatter diminish the magnitude of the fundame
There is no outscatter to the fundamental due to the absence of lower order harmonic
When Re= o0, there is no damping, but by comparing parts (a) and (b) of Fig. 5, it
apparent that the effects of backscatter increase by only a small amount. Thus, visc
does not have a large influence on the fundamental over the seven time steps comput
The 1st harmonic reveals more intricate behavior. Time histories of the production (|
outscatter), backscatter, and viscous damping are displayed in Fig. 6. The 1st harmo
created at the 1st time step by self-interaction of the fundamental, as denotd bin
the figure, and continues to grow with time, but at a decreasing rate as the fundams
diminishes. Being an odd harmonic, its amplitude is negative. Its only mode of product
is through the fundamental, but it experiences backscatter due to interaction betwee
fundamental and 2nd harmonic, noted By_3 in the figure, and between the 1st anc
3rd harmonics, shown &,_4. Other modes of backscatter are negligible and not show
Production swamps backscatter and damping over all seven time steps. Backscatte
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(a) Re = 500 1st Harmonic
0.005
Bi3
i
0o —0 g e g gamin
1 2 ° 6 4
8 0005 -
2
=
'<E -0.01 +
O1.1 =0net
"I - R + ...........
00151 + S e +
-0.02
Time Step

{b) Re = Infinite
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FIG.6. The time evolution of the 1st harmonic. Displays backscattgr,Band outscatter, Q-m., resulting
from interactions between specific harmonic pairs, fp) and (m, m,), and damping due to viscosity. Example
Bs-3 represents backscatter due to interaction between fundamental and 2nd harmonic.

damping serve to diminish the amplitude of the 1st harmonic, and damping increases
time because the harmonic is growing.

When Re= o0, there is no damping, but production and backscatter increase by onl
small amount, as shown in Fig. 8. Like the fundamental, the 1st harmonic is affected
by inviscid mechanisms than by viscosity throughout the time evolution of the symbc
computation.

Bypassing the 2nd harmonic, an analysis is made of the 3rd harmonic due to its gre
complexity. While the 2nd harmonic is created solely by interactions between the fun
mental and the 1st harmonic, the 3rd harmonic is created from outscatter produced by
distinct pairs of interactions: (a) the fundamental and the 2nd harmonic, and (b) the <
interactions of the 1st harmonic. The two production mechanisms are represei@edby
andO,_, in Fig. 7, in whichO;_3 is nearly three times as large @s_, for all seven time
steps. It may seem counterintuitive tl@¢ 3 should be that much greater th@a_», given
that the 1st harmonic is straddled by an interaction that produces a greater effect the
own self-interaction. The explanation lies in the large amplitiele of the fundamental,
such that F1 F3| > %FZZ, (see discussion in Appendix B).
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(a) Re = 500 3rd Harmonic
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(b) Re = Infinite
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-0.008 +
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FIG. 7. The time evolution of the 3rd harmonic. Displays outscatter, backscatter, and viscous damping

Backscatter to the 3rd harmonic occurs due to interaction between the fundamenta
4th harmonic and between the 1st and 5th harmonics, as shown in Fig;Z4endB;_g, in
which B;_s > B,_g. All higher order backscatter is negligible and therefore excluded. T|
net effect of backscatter is about one-fourth that of production, but damping is compar
in magnitude to primary backscatter, so the net effect of backscatter and damping is ¢
significant on the 3rd harmonic.

Lack of damping at Re- co has a more significant effect on the 3rd harmonic than fc
the lower order harmonics and the fundamental, as shown in Fig. 7. Beginning with
3rd harmonic, the solution revealed that the lack of viscosity has an increasingly profo
effect on both production and backscatter with increasing harmonic order, with the stron
impact being on backscatter. Results for higher order harmonics are not displayed.

Analysis also reveals that for each successively higher order harmonic, the role of dam
increases to the point of exceeding the effect of backscatter, and the combination of dam
and backscatter becomes increasingly significant relative to the net effect of produc
This is certainly an intuitive result. The ratio of the magnitude of production to the combir
magnitude of damping and backscatter, however, is about three for the 8th harmonic. T
production, or outscatter, continues to play the dominant role.
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(a) Re =500 10th Harmonic
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FIG. 8. The time evolution of the 10th harmonic. Displays outscatter and viscous damping. Being the higt
order harmonic in the symbolic solution, no backscatter is present.

More modes of production are present with increasing harmonic order, as evident in
figures and in Table Ill, due to the greater number of associated lower order harmor
Thus, while the 5th harmonic has three production modes, the 7th harmonic has four. By
9th and 10th harmonics there are five modes of production, as shown in Fig. 8 for the
harmonic. The strongest, or primary, mode of production was found to always involve
fundamental. Each individual secondary mode of production is smaller in magnitude thar
primary mode. With increasing harmonic order, however, there are more secondary m
and collectively they can produce a greater effect than the primary mode of product
It is therefore apparent that as time evolves and additional higher order harmonics
produced, the mechanisms of outscatter become increasingly numerous and comple;
the other hand, there are at most only two significant backscatter combinations for all
harmonics produced in the symbolic solution, and only one of those has a primary eff
The 9th harmonic has only one backscatter mode and the 10th harmonic has none, a
be discussed subsequently.

Three key facts emerge regarding the mechanisms and behavior of backscatter i
symbolic solution of the Burgers equation. First of all, significant backscatter to each t
monic except the 1st results solely from interactions between a harmonic pair containil
lower order harmonic and a higher order harmonic relative to the harmonic being influen
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FIG. 9. The comparative amplitudes of the fundamental and 1st through 10th harmonics at each of s
discrete time steps in symbolic computation of the Burgers equation for a)dR6 and (b) infinite Re. The slope
of each curve reveals the time rate of change of each harmonic.

In all cases observed, the fundamental interacting with the adjacent higher order harmr
creates the dominant backscatter effect. Thus backscatter cannot be characterized as
calized” nonlinear effect. Backscatter due to interactions in which both harmonics in
pair are of higher order than the affected harmonic was found to be negligible in the pre!
inary computations. This certainly may not be the case for solutions with initial conditic
that contain high order harmonics of large amplitude. There may be other cases wher
cumulative backscatter created by a myriad of high order pairs could be significant. Sec
the effect of backscatter is to deplete momentum in all cases, regardless of the value c
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Thus, viscous damping and backscatter work in concert to decrease the momentum
time evolution beyond the current preliminary results, there may be cases where the e
of backscatter is to supply momentum to lower order harmonics and the fundamental. Tt
as the symbolic solution evolves, the highest order harmonic included at any given time
experiences production but no backscatter because of the absence of the next higher
harmonic. This is illustrated in Fig. 8 for the 10th harmonic, the highest order conside
in the solution.

Itis argued that the unavoidable exclusion of backscatter for the highest order harm
is of negligible consequence to the symbolic solution. First of all, by virtue of the filterir
process described in Subsection 3.5, the amplitude of the highest order harmonic includ
the solution at each time step is inherently small. Each successive higher order harmol
allowed into the solution only when production (i.e., outscatter) causes the current higl
order harmonic to exceed a certain magnitude relative to its lower order neighbor. -
two primary ways the highest order harmonic affects the solution is through backsce
to its lower order neighbor and production to the next higher order harmonic. As v
described in the preceding discussion, backscatter depletes momentum, at least fc
preliminary computations undertaken in this study. Thus, the lack of backscatter to
highest order harmonic serves to make its amplitude somewhat larger than it othen
would be. Through backscatter, it therefore causes its lower order neighbor to be some
smaller than otherwise. Then, because production of the highest order harmonic is dire
related to the magnitude of its lower order neighbor, it in turn receives less production
grows less in amplitude. So the tendency of the highest order harmonic to become too |
due to its not receiving backscatter is counteracted by a self-adjusting process. A n
rigorous validation of solution accuracy, with truncation of higher order harmonics, is tl
the kinetic energy of the symbolic solution of the inviscid Burgers equation (i.es &¢
was found to remain constant to within 0.14% as the solution progressed in time. T
energy is conserved to a high order of accuracy.

Figure 9 displays the “birth” and growth of the 10 harmonics produced by the solutic
The fundamental is excluded from the figure. The 4th harmonic is “born” at the 3rd tir
step and its growth accelerates in time. The 7th harmonic is born at the 4th time step v
Re= o0, and at the 5th time step when R&00. The figure clearly reveals the enhance
effect of viscous damping with increasing harmonic order.

3.5. Filtering negligible symbolic terms As previously discussed, the symbolic results
displayed in Tables | and Il represent a filtered set of computations. Sensitivity tests v
done in an attempt to develop an effective process to identify and eliminate negligible te
prior to symbolic multiplication in order to prevent or minimize unproductive combinatori
explosion and maintain solution accuracy. However, a significant portion of the filteri
process can only be performed after symbolic operations have produced a myriad of
critical and superfluous terms. Filtering is based primarily on evaluating the symbolic tel
comprising the amplitudes of the fundamental and each harmonic. The separate issue
addition, or “birth,” of higher order harmonics into the symbolic solution was described
Subsection 3.4.

In (8) it is apparent that the leading inviscid and viscous terms for each harmonic
Cn, A" 2 At andDy,, A"« At" 2 in whichCp,andDy, are their leading coefficients.
The second inviscid and viscous terms @rgA™ 2" At and Dy, A2 FEALNT2 2
with leading coefficient€,, andDy,. The relationship is identical for all successive term:
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considered. In evaluating the magnitude of terms at each time step, all terms are comj
by ratio to their respective lead term (i.e., inviscid and viscous terms are treated separa
The exception is the fundamental for which the lead ter,ithe initial amplitude. Thus
all terms for the fundamental are compared instead to the 2nd inviscid @ayic? At2.
For all harmonics, the resulting ratios, Rat@end Ratig, are as follows for the inviscid
and viscous terms, respectively,
; C”l 2j-2
Ratio = C—[AKAt] ! (11a)
1

n

and

Ratio, = ﬁ[AKAt]ZJ*Z (11b)
Dn,
with j =2,3,4,...,J. As will be discussedAx At <« 1. This composite factor, which
appears in brackets in (11a) and (11b), is raised to an additional power of two for €
successive higher order term being compared to the leading term. The magnitudes c
coefficientratio€,,; /C,, andDy, / Dy, in (11a) and (11b) play a definitive role in discerning
whether a higher order term is negligible and can be excluded from the symbolic solu
at any given time step.

The filtering process implicitly requires upper numerical limitsfoandAt, and a lower
limit on Re in order to evaluate the relative magnitudes of higher order symbolic ter
and to establish the range of numerical parameters for which the symbolic solution apf
Higher order terms were eliminated if it was determined that their absence would
compromise the cumulative accuracy of subsequent symbolic operations. Sensitivity
indicate that setting Ratie= Ratio, ~ 0.01 yields an effective filtering criterion. Given
this criterion, appropriate upper numerical limits were determined for the initial amplitu
A, and the non-dimensional time steft, as A <0.3 andAt < 0.055. Because the non-
dimensional wavenumber is large, i.e5 2, the preceding limits ont and A assure that
Ax At « 1, which reduces the magnitude of higher order terms and enables their trunce
without compromising the validity of the symbolic solution. In fask At ~ 0.1, such that
any combination ofA and At that satisfiesAAt ~0.1/2r provides similar results when
substituted into the symbolic solution. That is, a larger (smaleaccompanies a smaller
(larger) At, but the character of the generated waveform and the relationship betweer
fundamental and harmonics remain similar. If one were to seek some combinafiandf
At which yieldedAx At > 0.1, it would be necessary to retain a greater number of high
order terms as compensation. The goal is to maximize accuracy with the symbolic solt
with a minimum number of terms.

Numerical values oA, At, and Re are not used, of course, in the symbolic computatior
However, once the symbolic solution is obtained, appropriate numerical values cat
substituted forAt, A, Re, andx, within their appropriate ranges, to explore numerice
implications of the solution. Note that the spatial variakleis also non-dimensional and
falls in the range & x <1. As mentioned in Subsection 3.2, the symbolic solution ¢
the Burgers equation presents no upper limit to Re, but requires thrabB@. Extending
the symbolic solution to lower values of Re would require retention of viscous terms
O(1/Re)? or higher. Symbolic computation reveals that term©al/Re)? have the form
En, AMT2I-2n+2I+1At+21-1(1/Re)?, yielding a ratio of(Ey, /Dy, )k?At(1/Re) to terms
of O(1/Re) in (8). To justify the exclusion of the higher order terms, the ratio must be sm
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A reasonable criterion is thaE,, /Dy, )k2At(1/Re) ~ 0.1 as an upper limit. Thus, i
and Dy, were of equal magnitude, the lower limit on Reynolds number would be R
However, the symbolic results indicate that a more typical representative ratio betweer
leading coefficients i€y, /Dy, ~ 40, in which case the lower limit on Reynolds numbet
would be Re> 900. Sensitivity runs with the symbolic computations, however, showed
effective limit to be Re> 500. Highest order harmonics are most sensitive to the exclusi
of O(1/Re)? terms. For longer time evolution these terms, and possibly even higher or
ones, must be retained. Therefore, it is clear that efforts exploring low Re flows wo
require solution refinements. Also, current results suggest that longer time evolution \
high values of Re may confront the need to ret@ifl/Re)? terms to maintain solution
accuracy, as well. The inclusion of more terms increases the computational complexity
intensifies combinatorial explosion. Thus, we face the irony that while numerical solutic
experience instabilities with high Re flows, the symbolic approach has difficulty with Ic
Re but can inherently handle flows with infinite Re. This is fortuitous because turbul
flows at extremely high values of Re are the most elusive and interesting in research al
practical applications.

4. SUMMARY AND CONCLUSIONS

A novel approach based on recursive symbolic computation is introduced for the
proximate analytic solution of both the inviscid and viscous Burgers equations. Throt
the recursive process, symbolic representations of momentum are obtained continuou:
space at discrete increments in time. Although approximate, the solution can be obtain
arbitrary, high order accuracy. Once obtained, appropriate numerical values can be ins
into the symbolic solution to explore parametric variations.

The symbolic computations allow examination of the solution at stages prior to comt
ing and simplifying terms during each time step. Thus, one can gain a deeper understar
of the precise role and character of all nonlinear interactions, viscous damping, and
interplay between inertial and viscous mechanisms. This is not done easily, if at all, v
numerical solutions, which produce only the net effect of nonlinear interactions and ot
physical processes. Likewise, the ability to readily isolate and assess the integrated
vidual effects of outscatter, backscatter, and viscous damping by post-processing sym
results lends power over numerical methods. The same basic arguments apply in comp
symbolic computation with traditional nonlinear analytical solutions. An added feature
the symbolic approach is that “turbulence” manifests as a process of combinatorics, prc
ing a fresh view to a classical problem, even though results are limited to the 1-D Bur
equation. Based on the preliminary efforts presented, it appears that symbolic comf
tion may be quite effective in unveiling the “anatomy” of the myriad inertial and viscol
interactions that underlie fundamental turbulent behavior.

Because of the tendency of nonlinear symbolic operations to produce combinatc
explosion, future efforts will require the development of improved filtering processes
select and eliminate negligible high order terms. Thus, while the preliminary results
limited to relatively short time evolution, it is envisioned that future efforts will explor
more fully developed flows. With further research, there may be potential to extend
symbolic computations to 2-D and 3-D studies.

The symbolic approach is superior to numerical techniques in four distinct ways: (a)
ability to reveal and elucidate direct nonlinear interactions between waveforms, includ
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the interplay between inertia and viscosity; (b) its ability to broadly explore parameter sp:
most importantly variations in Re, by simple substitution of desired numerical values i
the analytical solution; (c) its ability to deal with a wide range of Re flgB30< Re< 0);
and (d) it produces no false dispersion or aliasing. In contrast, numerical solutions
quire an additional simulation for every variation in a parameter, and DNS is limited
Re<4000.

Potential applications include the development of improved subgrid scale (SGS) par
eterizations for large eddy simulation (LES) models, and studies that complement di
numerical simulation (DNS) in exploring fundamental aspects of turbulent flow behavi
In that regard, the symbolic approach may overcome the low Reynolds number restrict
faced by DNS.

APPENDIX A: QUADRATIC NONLINEAR INTERACTIONS

Simple symbolic “calculations” with the dimensional tewdu/dx demonstrate the gen-
eral character of quadratic nonlinearity as embodied in both the Burgers equation an
Navier—Stokes equations. The initial value- Asin(«x) is assumed, where the amplitude,
A < 1, and wavenumber is defined by

(A1)

in which Lo is the wavelength for the initial condition and represents the “fundament:
wave spanning a periodic spatial domain. Applying the initial condition to the quadre
nonlinearity yields

0 . 1 .
ua—i = k A% sin(k X) COSk X) = S« A?sin(2«x), (A2)

in which the trigonometric identity

sinf cosgp = %[sin(@ + @) +sin® — ¢)] (A3)

can be used to show that the nonlinearity leads to a doubling of the initial wavenumber. -
is, the initial wave, or fundamental, produces a harmonic through the nonlinear proces
It can be shown in general, as implied by (A3), that the quadratic nonlinear interact
between any two waves with respective wavenumbegasnds, create two additional waves
with wavenumbers; + k, andxy — k2 OF —k1 + k2, noting that a sign change can occut
through a nonlinear interaction (Minorski [19] can be consulted with respect to quadr
and higher degree nonlinearities.). That is, the nonlinear interaction produces new w
that are larger and smaller than the original interacting waves. This can be summarize

2
Klarge = K1 + k2 = m (A4)
. 2
~ Lilp/(Li— Ly’
wherelL; andL, correspond to the two interacting waves. Their associated waveleng
are

(A5)

Ksmall = K1 — K2

Lilo

_ A6
Li+ L (A6)

I-small =
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and

Lilo

_— A7
S (A7)

Llarge =
where it is emphasized that the smaller (larger) wavelength is associated with the s
(smaller) wavenumber. The process leading to the creation of smaller waves is referre
as outscatter. Similarly, the creation of larger waves from the nonlinear interaction betw
smaller waves is termed backscatter. The two nonlinear mechanisms constitute the in
transfer of momentum between scales. In general, outscatter can be thought of as a pr
tion mechanism and backscatter as a modification to existing lower harmonics. Howe
because both processes constitute the inertial transfer of momentum (and energy) bet
scales, neither outscatter nor backscatter add to or subtract momentum (or energy) froi
system. Thus, use of the word production here only refers to the creation of higher o
harmonics at the expense of lower order ones. Actual production to a system is thrc
large-scale shear or buoyancy, which are excluded in the current study.

Beyond the initial interaction of two waves in a time varying nonlinear process, the “birt
of new waves creates a large, increasing number of nonlinear interactions as time eva
Symbolic computation provides an effective tool to explore the intricacies of such a la
number of nonlinear interactions in a study of developing 1-D “burgulence.”

APPENDIX B: ISOLATING OUTSCATTER, BACKSCATTER, AND VISCOUS DAMPING

In this appendix, a method is developed to isolate and integrate the individual effect
outscatter, backscatter, and viscous damping at each discrete time step in the symbolic
tion of Burgers equation. The method is applied to the solution in a post-processing fast

The solution at each discrete time level can be expressed as

u(x, mAt) = Fy sin(kX) + Fzsin(2¢Xx) + F3sin(3«Xx) + - - - + Fy Sin(N«x), (B1)

in which all terms associated with the amplitude of each respective harmonic are lum
into the symbold=;, F;, F3, etc., rather than kept in expanded form. Symbolic integratio
to the next time level is achieved by substituting (B1) into the forward-in-time algoritht
(7a), to yield

outscatter

L
- ( lepl FiFi—n — %Fnz/z)

N
U(X, (M+1)AD) =u(x, AL +xAt S g packscater Sin(nkx),
n—1 + ( YR I:H—n)
viscous damping
—(2n4.Fn)
(B2)

in whichn=1,2,3,..., N corresponds to the individual harmonics, and the subscri
1=1,23,..., LporLyrepresents the amplitude pairs involved in outscatter or backscat

for each harmonic of the solution. In genetaj # L, andL, and Ly, differ from one
harmonic to the next. The outscatter, backscatter, and damping terms have been ider
in (B2). The term%Fnz/2 is applied only to production by outscatter of odd harmonic
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(i.e., whenn is even) and is excluded for even harmonics (whes odd). The individual
mechanisms for each harmonic are separated as

LP
n 1
outscatter= —KAt§<Z FFi_n — E(Fnz/Z)n—even>’ (B3)
1=1
n(&
backscatter= KAt (Z = F|+n>, (B4)
I=1
and
. . 2 2 1
viscous damping= —k“Atn R—an. (B5)

The expressions (B3), (B4), and (B5) reveal the specific pairs of interacting harmonics
modified a given harmonic in achieving its amplitude at the current discrete time le
By way of example, if we consider the 3rd harmonic, threas 4 and production due to
outscatter from lower order harmonics-&« At{F;F3 + %Fzz}, and the backscatter from
higher order harmonics iskAt{F,Fs+ F,Fs + FsF7 + - --}. Note thatL , =2 because
only the harmonic pairs (1, 3), (3, 1), and (2, 2) can produce the 3rd harmonic, wherea:
value ofLy, is theoretically unlimited because any two harmonics that differ in wavenumt
by 4« x interact to yield backscatter (see Table Ill). However, only a small number
backscatter interactions have magnitudes large enough to have a significant effect. Vis
damping at each time step for the 3rd harmonie 1«2 At %EF“. To quantify the outscatter,
backscatter, and damping, numerical valuesfont, and Re are inserted into each termr
comprising the amplitude§&1, F,, F3, etc. Best accuracy is achieved by averaging th
numerical values oF for the preceding and current time levels. In closing this discussio
it is important to emphasize that (B2) is not used to compute the symbolic solution
the Burgers equation. Instead, it is used solely to develop the algorithms necessary to
process the symbolic solution in separating and analyzing the integrated effects of outsc
backscatter, and viscous damping for each time step.
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